Advertisement

The Protein Journal

, Volume 38, Issue 3, pp 236–248 | Cite as

The Principles of Protein Targeting and Transport Across Cell Membranes

  • Yuanyuan Chen
  • Sri Karthika Shanmugam
  • Ross E. DalbeyEmail author
Article

Abstract

The past several decades have witnessed tremendous growth in the protein targeting, transport and translocation field. Major advances were made during this time period. Now the molecular details of the targeting factors, receptors and the membrane channels that were envisioned in Blobel’s Signal Hypothesis in the 1970s have been revealed by powerful structural methods. It is evident that there is a myriad of cytosolic and membrane associated systems that accurately sort and target newly synthesized proteins to their correct membrane translocases for membrane insertion or protein translocation. Here we will describe the common principles for protein transport in prokaryotes and eukaryotes.

Keywords

Protein targeting Chaperones Translocase Insertases Energetics 

Notes

Acknowledgements

This work was partially supported by National Science Foundation Grant MCB-1814936 (R.E.D).

References

  1. 1.
    Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6(11):805–814.  https://doi.org/10.1038/nrmicro1991 Google Scholar
  2. 2.
    Lake JA (2009) Evidence for an early prokaryotic endosymbiosis. Nature 460(7258):967–971.  https://doi.org/10.1038/nature08183 Google Scholar
  3. 3.
    Tocheva EI, Ortega DR, Jensen GJ (2016) Sporulation, bacterial cell envelopes and the origin of life. Nat Rev Microbiol 14(8):535–542.  https://doi.org/10.1038/nrmicro.2016.85 Google Scholar
  4. 4.
    Gould SB, Garg SG, Martin WF (2016) Bacterial vesicle secretion and the evolutionary origin of the eukaryotic endomembrane system. Trends Microbiol 24(7):525–534.  https://doi.org/10.1016/j.tim.2016.03.005 Google Scholar
  5. 5.
    Blobel G, Sabatini DD (1971) Ribosome-membrane interaction in eukaryotic cells. In: Manson LA (ed) Biomembranes. Springer, Boston, pp 193–195.  https://doi.org/10.1007/978-1-4684-3330-2_16 Google Scholar
  6. 6.
    Blobel G (2000) Protein targeting (Nobel lecture). ChemBioChem 1(2):86–102Google Scholar
  7. 7.
    Blobel G (2000) Protein targeting. Biosci Rep 20(5):303–344Google Scholar
  8. 8.
    Maccecchini ML, Rudin Y, Blobel G, Schatz G (1979) Import of proteins into mitochondria: precursor forms of the extramitochondrially made F1-ATPase subunits in yeast. Proc Natl Acad Sci USA 76(1):343–347.  https://doi.org/10.1073/pnas.76.1.343 Google Scholar
  9. 9.
    Dobberstein B, Blobel G, Chua NH (1977) In vitro synthesis and processing of a putative precursor for the small subunit of ribulose-1,5-bisphosphate carboxylase of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 74(3):1082–1085.  https://doi.org/10.1073/pnas.74.3.1082 Google Scholar
  10. 10.
    Cokol M, Nair R, Rost B (2000) Finding nuclear localization signals. EMBO Rep 1(5):411–415.  https://doi.org/10.1093/embo-reports/kvd092 Google Scholar
  11. 11.
    Sacksteder KA, Gould SJ (2000) The genetics of peroxisome biogenesis. Annu Rev Genet 34:623–652.  https://doi.org/10.1146/annurev.genet.34.1.623 Google Scholar
  12. 12.
    Gould SG, Keller GA, Subramani S (1987) Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol 105(6 Pt 2):2923–2931Google Scholar
  13. 13.
    Osumi T, Tsukamoto T, Hata S, Yokota S, Miura S, Fujiki Y, Hijikata M, Miyazawa S, Hashimoto T (1991) Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem Biophys Res Commun 181(3):947–954Google Scholar
  14. 14.
    Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271(5255):1519–1526Google Scholar
  15. 15.
    Dalbey RE, Wang P, Kuhn A (2011) Assembly of bacterial inner membrane proteins. Annu Rev Biochem 80:161–187.  https://doi.org/10.1146/annurev-biochem-060409-092524 Google Scholar
  16. 16.
    Pohlschroder M, Prinz WA, Hartmann E, Beckwith J (1997) Protein translocation in the three domains of life: variations on a theme. Cell 91(5):563–566Google Scholar
  17. 17.
    Pohlschroder M, Gimenez MI, Jarrell KF (2005) Protein transport in Archaea: sec and twin arginine translocation pathways. Curr Opin Microbiol 8(6):713–719.  https://doi.org/10.1016/j.mib.2005.10.006 Google Scholar
  18. 18.
    Hansen KG, Aviram N, Laborenz J, Bibi C, Meyer M, Spang A, Schuldiner M, Herrmann JM (2018) An ER surface retrieval pathway safeguards the import of mitochondrial membrane proteins in yeast. Science 361(6407):1118–1122.  https://doi.org/10.1126/science.aar8174 Google Scholar
  19. 19.
    Titorenko VI, Ogrydziak DM, Rachubinski RA (1997) Four distinct secretory pathways serve protein secretion, cell surface growth, and peroxisome biogenesis in the yeast Yarrowia lipolytica. Mol Cell Biol 17(9):5210–5226Google Scholar
  20. 20.
    Titorenko VI, Rachubinski RA (1998) Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol Cell Biol 18(5):2789–2803Google Scholar
  21. 21.
    Titorenko VI, Rachubinski RA (1998) The endoplasmic reticulum plays an essential role in peroxisome biogenesis. Trends Biochem Sci 23(7):231–233Google Scholar
  22. 22.
    Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387(6632):493–497.  https://doi.org/10.1038/387493a0 Google Scholar
  23. 23.
    Pfanner N, Warscheid B, Wiedemann N (2019) Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol.  https://doi.org/10.1038/s41580-018-0092-0 Google Scholar
  24. 24.
    Martin W, Stoebe B, Goremykin V, Hapsmann S, Hasegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393(6681):162–165.  https://doi.org/10.1038/30234 Google Scholar
  25. 25.
    Orfanoudaki G, Economou A (2014) Proteome-wide subcellular topologies of E. coli polypeptides database (STEPdb). Mol Cell Proteomics 13(12):3674–3687.  https://doi.org/10.1074/mcp.o114.041137 Google Scholar
  26. 26.
    Palmer T, Berks BC (2012) The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 10(7):483–496.  https://doi.org/10.1038/nrmicro2814 Google Scholar
  27. 27.
    Berks BC (2015) The twin-arginine protein translocation pathway. Annu Rev Biochem 84:843–864.  https://doi.org/10.1146/annurev-biochem-060614-034251 Google Scholar
  28. 28.
    Simon SM, Blobel G (1991) A protein-conducting channel in the endoplasmic reticulum. Cell 65(3):371–380Google Scholar
  29. 29.
    Van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427(6969):36–44.  https://doi.org/10.1038/nature02218 Google Scholar
  30. 30.
    Osborne AR, Rapoport TA, van den Berg B (2005) Protein translocation by the Sec61/SecY channel. Annu Rev Cell Dev Biol 21:529–550.  https://doi.org/10.1146/annurev.cellbio.21.012704.133214 Google Scholar
  31. 31.
    Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T, Ihmels J, Andrews B, Boone C, Greenblatt JF, Weissman JS, Krogan NJ (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123(3):507–519.  https://doi.org/10.1016/j.cell.2005.08.031 Google Scholar
  32. 32.
    Schuldiner M, Metz J, Schmid V, Denic V, Rakwalska M, Schmitt HD, Schwappach B, Weissman JS (2008) The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134(4):634–645.  https://doi.org/10.1016/j.cell.2008.06.025 Google Scholar
  33. 33.
    Green ER, Mecsas J (2016) Bacterial secretion systems: an overview. Microbiol Spectr.  https://doi.org/10.1128/microbiolspec.vmbf-0012-2015 Google Scholar
  34. 34.
    Durand E, Nguyen VS, Zoued A, Logger L, Pehau-Arnaudet G, Aschtgen MS, Spinelli S, Desmyter A, Bardiaux B, Dujeancourt A, Roussel A, Cambillau C, Cascales E, Fronzes R (2015) Biogenesis and structure of a type VI secretion membrane core complex. Nature 523(7562):555–560.  https://doi.org/10.1038/nature14667 Google Scholar
  35. 35.
    Hu J, Worrall LJ, Hong C, Vuckovic M, Atkinson CE, Caveney N, Yu Z, Strynadka NCJ (2018) Cryo-EM analysis of the T3S injectisome reveals the structure of the needle and open secretin. Nat Commun 9(1):3840.  https://doi.org/10.1038/s41467-018-06298-8 Google Scholar
  36. 36.
    Low HH, Gubellini F, Rivera-Calzada A, Braun N, Connery S, Dujeancourt A, Lu F, Redzej A, Fronzes R, Orlova EV, Waksman G (2014) Structure of a type IV secretion system. Nature 508(7497):550–553.  https://doi.org/10.1038/nature13081 Google Scholar
  37. 37.
    Kendall DA, Bock SC, Kaiser ET (1986) Idealization of the hydrophobic segment of the alkaline phosphatase signal peptide. Nature 321(6071):706–708.  https://doi.org/10.1038/321706a0 Google Scholar
  38. 38.
    Yamamoto Y, Taniyama Y, Kikuchi M, Ikehara M (1987) Engineering of the hydrophobic segment of the signal sequence for efficient secretion of human lysozyme by Saccharomyces cerevisiae. Biochem Biophys Res Commun 149(2):431–436Google Scholar
  39. 39.
    Kaiser CA, Preuss D, Grisafi P, Botstein D (1987) Many random sequences functionally replace the secretion signal sequence of yeast invertase. Science 235(4786):312–317Google Scholar
  40. 40.
    von Heijne G (1990) The signal peptide. J Membr Biol 115(3):195–201Google Scholar
  41. 41.
    Dalbey RE (1995) Signal peptidases—intracellular proteases in the export pathway. ASM News 61(11):586–590Google Scholar
  42. 42.
    Karla A, Lively MO, Paetzel M, Dalbey R (2005) The identification of residues that control signal peptidase cleavage fidelity and substrate specificity. J Biol Chem 280(8):6731–6741.  https://doi.org/10.1074/jbc.M413019200 Google Scholar
  43. 43.
    Ekici OD, Karla A, Paetzel M, Lively MO, Pei D, Dalbey RE (2007) Altered -3 substrate specificity of Escherichia coli signal peptidase 1 mutants as revealed by screening a combinatorial peptide library. J Biol Chem 282(1):417–425.  https://doi.org/10.1074/jbc.M608779200 Google Scholar
  44. 44.
    Evans EA, Gilmore R, Blobel G (1986) Purification of microsomal signal peptidase as a complex. Proc Natl Acad Sci USA 83(3):581–585Google Scholar
  45. 45.
    Tsirigotaki A, De Geyter J, Sostaric N, Economou A, Karamanou S (2017) Protein export through the bacterial Sec pathway. Nat Rev Microbiol 15(1):21–36.  https://doi.org/10.1038/nrmicro.2016.161 Google Scholar
  46. 46.
    Akopian D, Shen K, Zhang X, Shan SO (2013) Signal recognition particle: an essential protein-targeting machine. Annu Rev Biochem 82:693–721.  https://doi.org/10.1146/annurev-biochem-072711-164732 Google Scholar
  47. 47.
    Ng DT, Brown JD, Walter P (1996) Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 134(2):269–278Google Scholar
  48. 48.
    Ast T, Cohen G, Schuldiner M (2013) A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell 152(5):1134–1145.  https://doi.org/10.1016/j.cell.2013.02.003 Google Scholar
  49. 49.
    Neumann-Haefelin C, Schafer U, Muller M, Koch HG (2000) SRP-dependent co-translational targeting and SecA-dependent translocation analyzed as individual steps in the export of a bacterial protein. EMBO J 19(23):6419–6426.  https://doi.org/10.1093/emboj/19.23.6419 Google Scholar
  50. 50.
    Wiedemann N, Pfanner N (2017) Mitochondrial machineries for protein import and assembly. Annu Rev Biochem 86:685–714.  https://doi.org/10.1146/annurev-biochem-060815-014352 Google Scholar
  51. 51.
    Backes S, Herrmann JM (2017) Protein translocation into the intermembrane space and matrix of mitochondria: mechanisms and driving forces. Front Mol Biosci 4:83.  https://doi.org/10.3389/fmolb.2017.00083 Google Scholar
  52. 52.
    Abe Y, Shodai T, Muto T, Mihara K, Torii H, Nishikawa S, Endo T, Kohda D (2000) Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100(5):551–560Google Scholar
  53. 53.
    Voos W, Martin H, Krimmer T, Pfanner N (1999) Mechanisms of protein translocation into mitochondria. Biochim Biophys Acta 1422(3):235–254Google Scholar
  54. 54.
    Bolter B (2018) En route into chloroplasts: preproteins’ way home. Photosynth Res 138(3):263–275.  https://doi.org/10.1007/s11120-018-0542-8 Google Scholar
  55. 55.
    Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8(5):978–984.  https://doi.org/10.1110/ps.8.5.978 Google Scholar
  56. 56.
    Schleiff E, Becker T (2011) Common ground for protein translocation: access control for mitochondria and chloroplasts. Nat Rev Mol Cell Biol 12(1):48–59.  https://doi.org/10.1038/nrm3027 Google Scholar
  57. 57.
    Bruce BD (2000) Chloroplast transit peptides: structure, function and evolution. Trends Cell Biol 10(10):440–447Google Scholar
  58. 58.
    Huang S, Taylor NL, Whelan J, Millar AH (2009) Refining the definition of plant mitochondrial presequences through analysis of sorting signals, N-terminal modifications, and cleavage motifs. Plant Physiol 150(3):1272–1285.  https://doi.org/10.1104/pp.109.137885 Google Scholar
  59. 59.
    Vogtle FN, Wortelkamp S, Zahedi RP, Becker D, Leidhold C, Gevaert K, Kellermann J, Voos W, Sickmann A, Pfanner N, Meisinger C (2009) Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139(2):428–439.  https://doi.org/10.1016/j.cell.2009.07.045 Google Scholar
  60. 60.
    Martin T, Sharma R, Sippel C, Waegemann K, Soll J, Vothknecht UC (2006) A protein kinase family in Arabidopsis phosphorylates chloroplast precursor proteins. J Biol Chem 281(52):40216–40223.  https://doi.org/10.1074/jbc.M606580200 Google Scholar
  61. 61.
    Oblong JE, Lamppa GK (1992) Identification of two structurally related proteins involved in proteolytic processing of precursors targeted to the chloroplast. EMBO J 11(12):4401–4409Google Scholar
  62. 62.
    Hawlitschek G, Schneider H, Schmidt B, Tropschug M, Hartl FU, Neupert W (1988) Mitochondrial protein import: identification of processing peptidase and of PEP, a processing enhancing protein. Cell 53(5):795–806Google Scholar
  63. 63.
    Bruce BD (2001) The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. Biochim Biophys Acta 1541(1–2):2–21Google Scholar
  64. 64.
    Midorikawa T, Endow JK, Dufour J, Zhu J, Inoue K (2014) Plastidic type I signal peptidase 1 is a redox-dependent thylakoidal processing peptidase. Plant J 80(4):592–603.  https://doi.org/10.1111/tpj.12655 Google Scholar
  65. 65.
    Brocard C, Hartig A (2006) Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim Biophys Acta 1763(12):1565–1573.  https://doi.org/10.1016/j.bbamcr.2006.08.022 Google Scholar
  66. 66.
    Schliebs W, Kunau WH (2006) PTS2 co-receptors: diverse proteins with common features. Biochim Biophys Acta 1763(12):1605–1612.  https://doi.org/10.1016/j.bbamcr.2006.08.051 Google Scholar
  67. 67.
    Reumann S (2004) Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiol 135(2):783–800.  https://doi.org/10.1104/pp.103.035584 Google Scholar
  68. 68.
    Christie M, Chang CW, Rona G, Smith KM, Stewart AG, Takeda AA, Fontes MR, Stewart M, Vertessy BG, Forwood JK, Kobe B (2016) Structural biology and regulation of protein import into the nucleus. J Mol Biol 428(10):2060–2090.  https://doi.org/10.1016/j.jmb.2015.10.023 Google Scholar
  69. 69.
    Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH (2007) Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem 282(8):5101–5105.  https://doi.org/10.1074/jbc.R600026200 Google Scholar
  70. 70.
    Eliyahu E, Pnueli L, Melamed D, Scherrer T, Gerber AP, Pines O, Rapaport D, Arava Y (2010) Tom20 mediates localization of mRNAs to mitochondria in a translation-dependent manner. Mol Cell Biol 30(1):284–294.  https://doi.org/10.1128/MCB.00651-09 Google Scholar
  71. 71.
    Lesnik C, Cohen Y, Atir-Lande A, Schuldiner M, Arava Y (2014) OM14 is a mitochondrial receptor for cytosolic ribosomes that supports co-translational import into mitochondria. Nat Commun 5:5711.  https://doi.org/10.1038/ncomms6711 Google Scholar
  72. 72.
    Schaffitzel C, Oswald M, Berger I, Ishikawa T, Abrahams JP, Koerten HK, Koning RI, Ban N (2006) Structure of the E. coli signal recognition particle bound to a translating ribosome. Nature 444(7118):503–506.  https://doi.org/10.1038/nature05182 Google Scholar
  73. 73.
    Angelini S, Deitermann S, Koch HG (2005) FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon. EMBO Rep 6(5):476–481.  https://doi.org/10.1038/sj.embor.7400385 Google Scholar
  74. 74.
    Shen K, Arslan S, Akopian D, Ha T, Shan SO (2012) Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 492(7428):271–275.  https://doi.org/10.1038/nature11726 Google Scholar
  75. 75.
    Jomaa A, Boehringer D, Leibundgut M, Ban N (2016) Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nat Commun 7:10471.  https://doi.org/10.1038/ncomms10471 Google Scholar
  76. 76.
    Castanie-Cornet MP, Bruel N (1843) Genevaux P (2014) Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. Biochim Biophys Acta 8:1442–1456.  https://doi.org/10.1016/j.bbamcr.2013.11.007 Google Scholar
  77. 77.
    Saio T, Guan X, Rossi P, Economou A, Kalodimos CG (2014) Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344(6184):1250494.  https://doi.org/10.1126/science.1250494 Google Scholar
  78. 78.
    Oh E, Becker AH, Sandikci A, Huber D, Chaba R, Gloge F, Nichols RJ, Typas A, Gross CA, Kramer G, Weissman JS, Bukau B (2011) Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147(6):1295–1308.  https://doi.org/10.1016/j.cell.2011.10.044 Google Scholar
  79. 79.
    Chatzi KE, Sardis MF, Economou A, Karamanou S (2014) SecA-mediated targeting and translocation of secretory proteins. Biochim Biophys Acta 1843(8):1466–1474.  https://doi.org/10.1016/j.bbamcr.2014.02.014 Google Scholar
  80. 80.
    Xu Z, Knafels JD, Yoshino K (2000) Crystal structure of the bacterial protein export chaperone secB. Nat Struct Biol 7(12):1172–1177.  https://doi.org/10.1038/82040 Google Scholar
  81. 81.
    Bechtluft P, Nouwen N, Tans SJ, Driessen AJ (2010) SecB—a chaperone dedicated to protein translocation. Mol BioSyst 6(4):620–627.  https://doi.org/10.1039/b915435c Google Scholar
  82. 82.
    Chirico WJ, Waters MG, Blobel G (1988) 70 K heat shock related proteins stimulate protein translocation into microsomes. Nature 332(6167):805–810.  https://doi.org/10.1038/332805a0 Google Scholar
  83. 83.
    Becker J, Walter W, Yan W, Craig EA (1996) Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo. Mol Cell Biol 16(8):4378–4386Google Scholar
  84. 84.
    Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332(6167):800–805.  https://doi.org/10.1038/332800a0 Google Scholar
  85. 85.
    Shao S, Hegde RS (2011) A calmodulin-dependent translocation pathway for small secretory proteins. Cell 147(7):1576–1588.  https://doi.org/10.1016/j.cell.2011.11.048 Google Scholar
  86. 86.
    Tripathi A, Mandon EC, Gilmore R, Rapoport TA (2017) Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins. J Biol Chem 292(19):8007–8018.  https://doi.org/10.1074/jbc.M116.761122 Google Scholar
  87. 87.
    Endo T, Mitsui S, Nakai M, Roise D (1996) Binding of mitochondrial presequences to yeast cytosolic heat shock protein 70 depends on the amphiphilicity of the presequence. J Biol Chem 271(8):4161–4167Google Scholar
  88. 88.
    Waegemann K, Paulsen H, Soll J (1990) Translocation of proteins into isolated-chloroplasts requires cytosolic factors to obtain import competence. FEBS Lett 261(1):89–92.  https://doi.org/10.1016/0014-5793(90)80643-W Google Scholar
  89. 89.
    May T, Soll J (2000) 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12(1):53–64Google Scholar
  90. 90.
    Qbadou S, Becker T, Mirus O, Tews I, Soll J, Schleiff E (2006) The molecular chaperone Hsp90 delivers precursor proteins to the chloroplast import receptor Toc64. EMBO J 25(9):1836–1847.  https://doi.org/10.1038/sj.emboj.7601091 Google Scholar
  91. 91.
    McCollum D, Monosov E, Subramani S (1993) The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells–the PAS8 protein binds to the COOH-terminal tripeptide peroxisomal targeting signal, and is a member of the TPR protein family. J Cell Biol 121(4):761–774Google Scholar
  92. 92.
    Glover JR, Andrews DW, Rachubinski RA (1994) Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc Natl Acad Sci USA 91(22):10541–10545.  https://doi.org/10.1073/pnas.91.22.10541 Google Scholar
  93. 93.
    Stanley WA, Filipp FV, Kursula P, Schuller N, Erdmann R, Schliebs W, Sattler M, Wilmanns M (2006) Recognition of a functional peroxisome type 1 target by the dynamic import receptor pex5p. Mol Cell 24(5):653–663.  https://doi.org/10.1016/j.molcel.2006.10.024 Google Scholar
  94. 94.
    Einwachter H, Sowinski S, Kunau WH, Schliebs W (2001) Yarrowia lipolytica Pex20p, Saccharomyces cerevisiae Pex18p/Pex21p and mammalian Pex5pL fulfil a common function in the early steps of the peroxisomal PTS2 import pathway. EMBO Rep 2(11):1035–1039.  https://doi.org/10.1093/embo-reports/kve228 Google Scholar
  95. 95.
    Sichting M, Schell-Steven A, Prokisch H, Erdmann R, Rottensteiner H (2003) Pex7p and Pex20p of Neurospora crassa function together in PTS2-dependent protein import into peroxisomes. Mol Biol Cell 14(2):810–821.  https://doi.org/10.1091/mbc.e02-08-0539 Google Scholar
  96. 96.
    Meinecke M, Cizmowski C, Schliebs W, Kruger V, Beck S, Wagner R, Erdmann R (2010) The peroxisomal importomer constitutes a large and highly dynamic pore. Nat Cell Biol 12(3):273–277.  https://doi.org/10.1038/ncb2027 Google Scholar
  97. 97.
    Gohlke U, Pullan L, McDevitt CA, Porcelli I, de Leeuw E, Palmer T, Saibil HR, Berks BC (2005) The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci USA 102(30):10482–10486.  https://doi.org/10.1073/pnas.0503558102 Google Scholar
  98. 98.
    Hinnah SC, Wagner R, Sveshnikova N, Harrer R, Soll J (2002) The chloroplast protein import channel Toc75: pore properties and interaction with transit peptides. Biophys J 83(2):899–911.  https://doi.org/10.1016/S0006-3495(02)75216-8 Google Scholar
  99. 99.
    Hill K, Model K, Ryan MT, Dietmeier K, Martin F, Wagner R, Pfanner N (1998) Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins [see comment]. Nature 395(6701):516–521.  https://doi.org/10.1038/26780 Google Scholar
  100. 100.
    Ganesan I, Shi LX, Labs M, Theg SM (2018) Evaluating the functional pore size of chloroplast TOC and TIC protein translocons: import of folded proteins. Plant Cell 30(9):2161–2173.  https://doi.org/10.1105/tpc.18.00427 Google Scholar
  101. 101.
    Spiess M (2014) Protein translocation: the Sec61/SecYEG translocon caught in the act. Curr Biol 24(8):R317–R319.  https://doi.org/10.1016/j.cub.2014.02.051 Google Scholar
  102. 102.
    Voorhees RM, Fernandez IS, Scheres SH, Hegde RS (2014) Structure of the mammalian ribosome-Sec61 complex to 3.4 A resolution. Cell 157(7):1632–1643.  https://doi.org/10.1016/j.cell.2014.05.024 Google Scholar
  103. 103.
    Schulze RJ, Komar J, Botte M, Allen WJ, Whitehouse S, Gold VA, Lycklama ANJA, Huard K, Berger I, Schaffitzel C, Collinson I (2014) Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG-SecDF-YajC-YidC. Proc Natl Acad Sci USA 111(13):4844–4849.  https://doi.org/10.1073/pnas.1315901111 Google Scholar
  104. 104.
    Itskanov S, Park E (2019) Structure of the posttranslational Sec protein-translocation channel complex from yeast. Science 363(6422):84–87.  https://doi.org/10.1126/science.aav6740 Google Scholar
  105. 105.
    Rapoport TA, Li L, Park E (2017) Structural and mechanistic insights into protein translocation. Annu Rev Cell Dev Biol 33:369–390.  https://doi.org/10.1146/annurev-cellbio-100616-060439 Google Scholar
  106. 106.
    Tanaka Y, Sugano Y, Takemoto M, Mori T, Furukawa A, Kusakizako T, Kumazaki K, Kashima A, Ishitani R, Sugita Y, Nureki O, Tsukazaki T (2015) Crystal structures of SecYEG in lipidic cubic phase elucidate a precise resting and a peptide-bound state. Cell Rep 13(8):1561–1568.  https://doi.org/10.1016/j.celrep.2015.10.025 Google Scholar
  107. 107.
    Breyton C, Haase W, Rapoport TA, Kuhlbrandt W, Collinson I (2002) Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418(6898):662–665.  https://doi.org/10.1038/nature00827 Google Scholar
  108. 108.
    Voorhees RM, Hegde RS (2016) Structure of the Sec61 channel opened by a signal sequence. Science 351(6268):88–91.  https://doi.org/10.1126/science.aad4992 Google Scholar
  109. 109.
    Park E, Menetret JF, Gumbart JC, Ludtke SJ, Li W, Whynot A, Rapoport TA, Akey CW (2014) Structure of the SecY channel during initiation of protein translocation. Nature 506(7486):102–106.  https://doi.org/10.1038/nature12720 Google Scholar
  110. 110.
    Gogala M, Becker T, Beatrix B, Armache JP, Barrio-Garcia C, Berninghausen O, Beckmann R (2014) Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature 506(7486):107–110.  https://doi.org/10.1038/nature12950 Google Scholar
  111. 111.
    Bolter B, Soll J, Schulz A, Hinnah S, Wagner R (1998) Origin of a chloroplast protein importer. Proc Natl Acad Sci USA 95(26):15831–15836.  https://doi.org/10.1073/pnas.95.26.15831 Google Scholar
  112. 112.
    Model K, Meisinger C, Kuhlbrandt W (2008) Cryo-electron microscopy structure of a yeast mitochondrial preprotein translocase. J Mol Biol 383(5):1049–1057.  https://doi.org/10.1016/j.jmb.2008.07.087 Google Scholar
  113. 113.
    Kunkele KP, Heins S, Dembowski M, Nargang FE, Benz R, Thieffry M, Walz J, Lill R, Nussberger S, Neupert W (1998) The preprotein translocation channel of the outer membrane of mitochondria. Cell 93(6):1009–1019Google Scholar
  114. 114.
    Chen KY, Li HM (2007) Precursor binding to an 880-kDa Toc complex as an early step during active import of protein into chloroplasts. Plant J 49(1):149–158.  https://doi.org/10.1111/j.1365-313X.2006.02944.x Google Scholar
  115. 115.
    Kikuchi S, Hirohashi T, Nakai M (2006) Characterization of the preprotein translocon at the outer envelope membrane of chloroplasts by blue native PAGE. Plant Cell Physiol 47(3):363–371.  https://doi.org/10.1093/pcp/pcj002 Google Scholar
  116. 116.
    Schleiff E, Soll J, Kuchler M, Kuhlbrandt W, Harrer R (2003) Characterization of the translocon of the outer envelope of chloroplasts. J Cell Biol 160(4):541–551.  https://doi.org/10.1083/jcb.200210060 Google Scholar
  117. 117.
    van Wilpe S, Ryan MT, Hill K, Maarse AC, Meisinger C, Brix J, Dekker PJ, Moczko M, Wagner R, Meijer M, Guiard B, Honlinger A, Pfanner N (1999) Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase. Nature 401(6752):485–489.  https://doi.org/10.1038/46802 Google Scholar
  118. 118.
    Poynor M, Eckert R, Nussberger S (2008) Dynamics of the preprotein translocation channel of the outer membrane of mitochondria. Biophys J 95(3):1511–1522.  https://doi.org/10.1529/biophysj.108.131003 Google Scholar
  119. 119.
    Schleiff E, Jelic M, Soll J (2003) A GTP-driven motor moves proteins across the outer envelope of chloroplasts. Proc Natl Acad Sci USA 100(8):4604–4609.  https://doi.org/10.1073/pnas.0730860100 Google Scholar
  120. 120.
    Truscott KN, Kovermann P, Geissler A, Merlin A, Meijer M, Driessen AJ, Rassow J, Pfanner N, Wagner R (2001) A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat Struct Biol 8(12):1074–1082.  https://doi.org/10.1038/nsb726 Google Scholar
  121. 121.
    Balsera M, Goetze TA, Kovacs-Bogdan E, Schurmann P, Wagner R, Buchanan BB, Soll J, Bolter B (2009) Characterization of Tic110, a channel-forming protein at the inner envelope membrane of chloroplasts, unveils a response to Ca(2+) and a stromal regulatory disulfide bridge. J Biol Chem 284(5):2603–2616.  https://doi.org/10.1074/jbc.M807134200 Google Scholar
  122. 122.
    Mokranjac D, Sichting M, Popov-Celeketic D, Mapa K, Gevorkyan-Airapetov L, Zohary K, Hell K, Azem A, Neupert W (2009) Role of Tim50 in the transfer of precursor proteins from the outer to the inner membrane of mitochondria. Mol Biol Cell 20(5):1400–1407.  https://doi.org/10.1091/mbc.E08-09-0934 Google Scholar
  123. 123.
    Demishtein-Zohary K, Gunsel U, Marom M, Banerjee R, Neupert W, Azem A, Mokranjac D (2017) Role of Tim17 in coupling the import motor to the translocation channel of the mitochondrial presequence translocase. Elife.  https://doi.org/10.7554/elife.22696 Google Scholar
  124. 124.
    Glaser S, van Dooren GG, Agrawal S, Brooks CF, McFadden GI, Striepen B, Higgins MK (2012) Tic22 is an essential chaperone required for protein import into the apicoplast. J Biol Chem 287(47):39505–39512.  https://doi.org/10.1074/jbc.M112.405100 Google Scholar
  125. 125.
    Rudolf M, Machettira AB, Gross LE, Weber KL, Bolte K, Bionda T, Sommer MS, Maier UG, Weber AP, Schleiff E, Tripp J (2013) In vivo function of Tic22, a protein import component of the intermembrane space of chloroplasts. Mol Plant 6(3):817–829.  https://doi.org/10.1093/mp/sss114 Google Scholar
  126. 126.
    Kovacs-Bogdan E, Benz JP, Soll J, Bolter B (2011) Tic20 forms a channel independent of Tic110 in chloroplasts. BMC Plant Biol 11:133.  https://doi.org/10.1186/1471-2229-11-133 Google Scholar
  127. 127.
    Platta HW, El Magraoui F, Schlee D, Grunau S, Girzalsky W, Erdmann R (2007) Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling. J Cell Biol 177(2):197–204.  https://doi.org/10.1083/jcb.200611012 Google Scholar
  128. 128.
    Carvalho AF, Pinto MP, Grou CP, Alencastre IS, Fransen M, Sa-Miranda C, Azevedo JE (2007) Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. J Biol Chem 282(43):31267–31272.  https://doi.org/10.1074/jbc.M706325200 Google Scholar
  129. 129.
    Kumazaki K, Chiba S, Takemoto M, Furukawa A, Nishiyama K, Sugano Y, Mori T, Dohmae N, Hirata K, Nakada-Nakura Y, Maturana AD, Tanaka Y, Mori H, Sugita Y, Arisaka F, Ito K, Ishitani R, Tsukazaki T, Nureki O (2014) Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509(7501):516–520.  https://doi.org/10.1038/nature13167 Google Scholar
  130. 130.
    Kumazaki K, Kishimoto T, Furukawa A, Mori H, Tanaka Y, Dohmae N, Ishitani R, Tsukazaki T, Nureki O (2014) Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase. Sci Rep 4:7299.  https://doi.org/10.1038/srep07299 Google Scholar
  131. 131.
    Chen Y, Dalbey RE (2018) Oxa1 superfamily: new members found in the ER. Trends Biochem Sci 43(3):151–153.  https://doi.org/10.1016/j.tibs.2017.12.005 Google Scholar
  132. 132.
    Aschtgen MS, Zoued A, Lloubes R, Journet L, Cascales E (2012) The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 Type VI secretion system, is inserted by YidC. Microbiologyopen 1(1):71–82.  https://doi.org/10.1002/mbo3.9 Google Scholar
  133. 133.
    Chen M, Samuelson JC, Jiang F, Muller M, Kuhn A, Dalbey RE (2002) Direct interaction of YidC with the Sec-independent Pf3 coat protein during its membrane protein insertion. J Biol Chem 277(10):7670–7675.  https://doi.org/10.1074/jbc.M110644200 Google Scholar
  134. 134.
    Samuelson JC, Jiang F, Yi L, Chen M, de Gier JW, Kuhn A, Dalbey RE (2001) Function of YidC for the insertion of M13 procoat protein in Escherichia coli: translocation of mutants that show differences in their membrane potential dependence and Sec requirement. J Biol Chem 276(37):34847–34852.  https://doi.org/10.1074/jbc.M105793200 Google Scholar
  135. 135.
    Pross E, Soussoula L, Seitl I, Lupo D, Kuhn A (2016) Membrane targeting and insertion of the C-tail protein SciP. J Mol Biol 428(20):4218–4227.  https://doi.org/10.1016/j.jmb.2016.09.001 Google Scholar
  136. 136.
    Neugebauer SA, Baulig A, Kuhn A, Facey SJ (2012) Membrane protein insertion of variant MscL proteins occurs at YidC and SecYEG of Escherichia coli. J Mol Biol 417(4):375–386.  https://doi.org/10.1016/j.jmb.2012.01.046 Google Scholar
  137. 137.
    Yi L, Celebi N, Chen M, Dalbey RE (2004) Sec/SRP requirements and energetics of membrane insertion of subunits a, b, and c of the Escherichia coli F1F0 ATP synthase. J Biol Chem 279(38):39260–39267.  https://doi.org/10.1074/jbc.M405490200 Google Scholar
  138. 138.
    van Bloois E, Jan Haan G, de Gier JW, Oudega B, Luirink J (2004) F(1)F(0) ATP synthase subunit c is targeted by the SRP to YidC in the E. coli inner membrane. FEBS Lett 576(1–2):97–100.  https://doi.org/10.1016/j.febslet.2004.08.069 Google Scholar
  139. 139.
    Yi L, Jiang F, Chen M, Cain B, Bolhuis A, Dalbey RE (2003) YidC is strictly required for membrane insertion of subunits a and c of the F(1)F(0)ATP synthase and SecE of the SecYEG translocase. Biochemistry 42(35):10537–10544.  https://doi.org/10.1021/bi034309h Google Scholar
  140. 140.
    van der Laan M, Bechtluft P, Kol S, Nouwen N, Driessen AJ (2004) F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J Cell Biol 165(2):213–222.  https://doi.org/10.1083/jcb.200402100 Google Scholar
  141. 141.
    Kuhn A, Koch HG, Dalbey RE (2017) Targeting and insertion of membrane proteins. EcoSal Plus 7(2):22.  https://doi.org/10.1128/ecosalplus.esp-0012-2016 Google Scholar
  142. 142.
    Hennon SW, Soman R, Zhu L, Dalbey RE (2015) YidC/Alb3/Oxa1 Family of Insertases. J Biol Chem 290(24):14866–14874.  https://doi.org/10.1074/jbc.R115.638171 Google Scholar
  143. 143.
    Noinaj N, Gumbart JC, Buchanan SK (2017) The beta-barrel assembly machinery in motion. Nat Rev Microbiol 15(4):197–204.  https://doi.org/10.1038/nrmicro.2016.191 Google Scholar
  144. 144.
    Estrada Mallarino L, Fan E, Odermatt M, Muller M, Lin M, Liang J, Heinzelmann M, Fritsche F, Apell HJ, Welte W (2015) TtOmp85, a beta-barrel assembly protein, functions by barrel augmentation. Biochemistry 54(3):844–852.  https://doi.org/10.1021/bi5011305 Google Scholar
  145. 145.
    Danoff EJ, Fleming KG (2015) Membrane defects accelerate outer membrane beta-barrel protein folding. Biochemistry 54(2):97–99.  https://doi.org/10.1021/bi501443p Google Scholar
  146. 146.
    Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, Easley NC, Lithgow T, Buchanan SK (2013) Structural insight into the biogenesis of beta-barrel membrane proteins. Nature 501(7467):385–390.  https://doi.org/10.1038/nature12521 Google Scholar
  147. 147.
    O’Neil PK, Richardson LGL, Paila YD, Piszczek G, Chakravarthy S, Noinaj N, Schnell D (2017) The POTRA domains of Toc75 exhibit chaperone-like function to facilitate import into chloroplasts. Proc Natl Acad Sci USA 114(24):E4868–E4876.  https://doi.org/10.1073/pnas.1621179114 Google Scholar
  148. 148.
    Geller BL (1991) Energy requirements for protein translocation across the Escherichia coli inner membrane. Mol Microbiol 5(9):2093–2098Google Scholar
  149. 149.
    Zimmermann R, Wickner W (1983) Energetics and intermediates of the assembly of Protein OmpA into the outer membrane of Escherichia coli. J Biol Chem 258(6):3920–3925Google Scholar
  150. 150.
    Geller BL, Movva NR, Wickner W (1986) Both ATP and the electrochemical potential are required for optimal assembly of pro-OmpA into Escherichia coli inner membrane vesicles. Proc Natl Acad Sci USA 83(12):4219–4222.  https://doi.org/10.1073/pnas.83.12.4219 Google Scholar
  151. 151.
    Bolender N, Sickmann A, Wagner R, Meisinger C, Pfanner N (2008) Multiple pathways for sorting mitochondrial precursor proteins. EMBO Rep 9(1):42–49.  https://doi.org/10.1038/sj.embor.7401126 Google Scholar
  152. 152.
    Mokranjac D, Neupert W (2008) Energetics of protein translocation into mitochondria. Biochim Biophys Acta 1777(7–8):758–762.  https://doi.org/10.1016/j.bbabio.2008.04.009 Google Scholar
  153. 153.
    Flugge UI, Hinz G (1986) Energy dependence of protein translocation into chloroplasts. Eur J Biochem 160(3):563–570Google Scholar
  154. 154.
    Shi LX, Theg SM (2013) Energetic cost of protein import across the envelope membranes of chloroplasts. Proc Natl Acad Sci USA 110(3):930–935.  https://doi.org/10.1073/pnas.1115886110 Google Scholar
  155. 155.
    Cline K, Ettinger WF, Theg SM (1992) Protein-specific energy requirements for protein transport across or into thylakoid membranes. Two lumenal proteins are transported in the absence of ATP. J Biol Chem 267(4):2688–2696Google Scholar
  156. 156.
    Berks BC, Sargent F, Palmer T (2000) The Tat protein export pathway. Mol Microbiol 35(2):260–274Google Scholar
  157. 157.
    Furukawa A, Yoshikaie K, Mori T, Mori H, Morimoto YV, Sugano Y, Iwaki S, Minamino T, Sugita Y, Tanaka Y, Tsukazaki T (2017) Tunnel formation inferred from the I-form structures of the proton-driven protein secretion motor SecDF. Cell Rep 19(5):895–901.  https://doi.org/10.1016/j.celrep.2017.04.030 Google Scholar
  158. 158.
    Gouridis G, Karamanou S, Sardis MF, Scharer MA, Capitani G, Economou A (2013) Quaternary dynamics of the SecA motor drive translocase catalysis. Mol Cell 52(5):655–666.  https://doi.org/10.1016/j.molcel.2013.10.036 Google Scholar
  159. 159.
    Hassdenteufel S, Johnson N, Paton AW, Paton JC, High S, Zimmermann R (2018) Chaperone-mediated Sec61 channel gating during ER import of small precursor proteins overcomes Sec61 inhibitor-reinforced energy barrier. Cell Rep 23(5):1373–1386.  https://doi.org/10.1016/j.celrep.2018.03.122 Google Scholar
  160. 160.
    Craig EA (2018) Hsp70 at the membrane: driving protein translocation. BMC Biol 16(1):11.  https://doi.org/10.1186/s12915-017-0474-3 Google Scholar
  161. 161.
    Su PH, Li HM (2010) Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. Plant Cell 22(5):1516–1531.  https://doi.org/10.1105/tpc.109.071415 Google Scholar
  162. 162.
    Wu X, Cabanos C, Rapoport TA (2019) Structure of the post-translational protein translocation machinery of the ER membrane. Nature 566(7742):136–139.  https://doi.org/10.1038/s41586-018-0856-x Google Scholar
  163. 163.
    Catipovic MA, Bauer BW, Loparo JJ, Rapoport TA (2019) Protein translocation by the SecA ATPase occurs by a power-stroke mechanism. EMBO J.  https://doi.org/10.15252/embj.2018101140 Google Scholar
  164. 164.
    Allen WJ, Corey RA, Oatley P, Sessions RB, Baldwin SA, Radford SE, Tuma R, Collinson I (2016) Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation. Elife.  https://doi.org/10.7554/elife.15598 Google Scholar
  165. 165.
    Yamano K, Kuroyanagi-Hasegawa M, Esaki M, Yokota M, Endo T (2008) Step-size analyses of the mitochondrial Hsp70 import motor reveal the Brownian ratchet in operation. J Biol Chem 283(40):27325–27332.  https://doi.org/10.1074/jbc.M805249200 Google Scholar
  166. 166.
    Corey RA, Ahdash Z, Shah A, Pyle E, Allen WJ, Fessl T, Lovett JE, Politis A, Collinson I (2019) ATP-induced asymmetric pre-protein folding as a driver of protein translocation through the Sec machinery. Elife.  https://doi.org/10.7554/elife.41803 Google Scholar
  167. 167.
    De Los Rios P, Ben-Zvi A, Slutsky O, Azem A, Goloubinoff P (2006) Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc Natl Acad Sci USA 103(16):6166–6171.  https://doi.org/10.1073/pnas.0510496103 Google Scholar
  168. 168.
    Schwerter DP, Grimm I, Platta HW, Erdmann R (2017) ATP-driven processes of peroxisomal matrix protein import. Biol Chem 398(5–6):607–624.  https://doi.org/10.1515/hsz-2016-0293 Google Scholar
  169. 169.
    Platta HW, Grunau S, Rosenkranz K, Girzalsky W, Erdmann R (2005) Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nat Cell Biol 7(8):817–822.  https://doi.org/10.1038/ncb1281 Google Scholar
  170. 170.
    Miyata N, Fujiki Y (2005) Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: aTP-independent import and ATP-dependent export. Mol Cell Biol 25(24):10822–10832.  https://doi.org/10.1128/MCB.25.24.10822-10832.2005 Google Scholar
  171. 171.
    Schliebs W, Girzalsky W, Erdmann R (2010) Peroxisomal protein import and ERAD: variations on a common theme. Nat Rev Mol Cell Biol 11(12):885–890.  https://doi.org/10.1038/nrm3008 Google Scholar
  172. 172.
    Koepp DM, Silver PA (1996) A GTPase controlling nuclear trafficking: running the right way or walking RANdomly? Cell 87(1):1–4Google Scholar
  173. 173.
    Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP. SignalP and related tools. Nat Protoc 2(4):953–971.  https://doi.org/10.1038/nprot.2007.131 Google Scholar
  174. 174.
    Clantin B, Delattre AS, Rucktooa P, Saint N, Meli AC, Locht C, Jacob-Dubuisson F, Villeret V (2007) Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily. Science 317(5840):957–961.  https://doi.org/10.1126/science.1143860 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yuanyuan Chen
    • 1
  • Sri Karthika Shanmugam
    • 1
  • Ross E. Dalbey
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryOhio State UniversityColumbusUSA

Personalised recommendations