The Protein Journal

, Volume 38, Issue 5, pp 515–524 | Cite as

The Relevance of Glutathione Reductase Inhibition by Fluoxetine to Human Health and Disease: Insights Derived from a Combined Kinetic and Docking Study

  • Ozlem Dalmizrak
  • Kerem Teralı
  • Evelyn Bright Asuquo
  • Izzet Hamdi Ogus
  • Nazmi OzerEmail author


Glutathione reductase (GR) is a homodimeric enzyme playing an important role in the regeneration of the central antioxidant molecule reduced glutathione (GSH) from oxidized glutathione (GSSG) at the expense of a molecule of NADPH. GSH scavenges and eliminates superoxide and hydroxyl radicals non-enzymatically or serves as an electron donor for several enzymes. Fluoxetine (FLU), a selective serotonin reuptake inhibitor, is widely prescribed in the treatment of major depressive disorder. Here, using enzyme kinetic studies and molecular docking simulations, we aimed at disclosing the mechanistic and structural aspects of the interaction between GR and FLU. Affecting enzyme activity in a dose-dependent manner, FLU was shown to be a moderately potent (IC50 = 0.88 mM) inhibitor of GR. When the variable substrate was GSSG, the type of inhibition was linear mixed-type competitive (Ki = 279 ± 32 μM; α = 5.48 ± 1.29). When the variable substrate was NADPH, however, the type of inhibition was non-competitive (Ki = 879 ± 82 μM). The observed difference in inhibition types was attributed to the binding of FLU in the large intermonomer cavity of GR, where it hampered catalysis and interfered with substrate binding. Overall, although it is anticipated that long-term use of FLU leads to acquired GR deficiency, the inhibitory action of FLU on GR may be therapeutically exploited in anti-cancer research.


Glutathione reductase Fluoxetine Linear mixed-type competitive inhibition Non-competitive inhibition Molecular docking 



Flavin adenine dinucleotide


Food and Drug Administration




Glutathione peroxidase


Glutathione reductase


Reduced glutathione


Oxidized glutathione, glutathione disulfide


Glutathione S-transferase


Half-maximal inhibitory concentration


Inhibition constant, dissociation constant of the enzyme‒inhibitor complex


Michaelis constant


Dissociation constant of the enzyme‒substrate complex


Nicotinamide adenine dinucleotide phosphate, oxidized form


Nicotinamide adenine dinucleotide phosphate, reduced form




Protein‒ligand interaction profiler


Reactive oxygen species


Superoxide dismutase


Selective serotonin reuptake inhibitor


Total antioxidant status


Transplacental transfer


Maximum velocity


Compliance with Ethical Standards

Conflict of interest

The authors declare no conflicts of interest.


  1. 1.
    Altschuler LL, Cohen L, Szuba MP, Burt VK, Gitlin M, Mintz J (1996) Pharmacologic management of psychiatric illness during pregnancy: dilemmas and guidelines. Am J Psychiatry 153:592–606CrossRefGoogle Scholar
  2. 2.
    Wong DT, Perry KW, Bymaster FP (2005) Case history: the discovery of fluoxetine hydrochloride. Nature 4:764–774CrossRefGoogle Scholar
  3. 3.
    Johnson RD, Lewis RJ, Angier MK (2007) The distribution of fluoxetine in human fluids and tissues. J Anal Toxicol 31:409–414CrossRefPubMedGoogle Scholar
  4. 4.
    Koenig AM, Thase ME (2009) First –line pharmacotherapies for depression-what is the best choice? Pol Arch Med Wewn 119:478–486PubMedGoogle Scholar
  5. 5.
    Crewe HK, Lennard MS, Tucker GT, Woods FR, Haddock RE (1992) The effect selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol 34:262–265CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gram LF (1994) Drug therapy: fluoxetine. N Engl J Med 17:1354–1361Google Scholar
  7. 7.
    Hiemke C, Hartter S (2000) Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 85:11–28CrossRefPubMedGoogle Scholar
  8. 8.
    Scordo MG, Spina E, Dahl ML, Gatti G, Perrucca E (2005) Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol 97:296–301CrossRefPubMedGoogle Scholar
  9. 9.
    Pato MT, Murphy DL, De Vane CL (1991) Sustained plasma concentrations of fluoxetine and/or norfluoxetine four and eight weeks after fluoxetine discontinuation. J Clin Psychopharmacol 11:224–225CrossRefPubMedGoogle Scholar
  10. 10.
    Hendrick V, Stowe ZN, Altschuler LL, Hwang S, Lee E, Haynes D (2003) Placental passage of antidepressant medications. Am J Psychiatry 160:993–996CrossRefPubMedGoogle Scholar
  11. 11.
    Ewing G, Tatarchuk Y, Appleby D, Schwartz N, Kim D (2015) Placental transfer of antidepressant medications: implications for postnatal adaptation syndrome. Clin Pharmacokinet 54:359–370CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Myren M, Mose T, Mathiesen L, Knudsen LE (2007) The human placenta-an alternative for studying foetal exposure. Toxicol In Vitro 21:1332–1340CrossRefPubMedGoogle Scholar
  13. 13.
    Morrison JL, Riggs KW, Rurak DW (2005) Fluoxetine during pregnancy: impact on fetal development. Reprod Fertil Dev 17:641–650CrossRefPubMedGoogle Scholar
  14. 14.
    Alwan S, Reefhuis J, Rasmussen SA, Olney RS, Friedman JM (2007) Use of selective serotonin-reuptake inhibitors in pregnancy and the risk of birth defects. N Engl J Med 356:2684–2692CrossRefPubMedGoogle Scholar
  15. 15.
    Pedersen LH, Henriksen TB, Vestergaard M, Olsen J, Bech BH (2009) Selective serotonin reuptake inhibitors in pregnancy and congenital malformations: population based cohort study. BMJ 339:1–6CrossRefGoogle Scholar
  16. 16.
    Nakkai-Pour HR, Broy P, Berard A (2010) Use of antidepressants during pregnancy and the risk of spontaneous abortion. CMAJ 13:1031–1037CrossRefGoogle Scholar
  17. 17.
    Kallen B, Otterblad Olausson P (2006) Antidepressant drugs during pregnancy and infant congenital heart defect. Reprod Toxicol 21:221–222CrossRefPubMedGoogle Scholar
  18. 18.
    Adzic M, Djordjevic J, Mitic M, Simic I, Rackov G, Djordjevic A, Elakovic I, Gordana M, Radojcic M (2011) Fluoxetine decreases glutathione reductase in erythrocytes of chronically isolated wistar rats. Acta Chim Slov 58:785–791PubMedGoogle Scholar
  19. 19.
    Ortega AL, Mena S, Estrela JM (2011) Glutathione in cancer cell death. Cancers (Basel) 3:1285–1310CrossRefGoogle Scholar
  20. 20.
    Rahman T, Hosen I, Islam MMT, Shekar HU (2012) Oxidative stress and human health. Adv Biosci Biotechnol 3:997–1019CrossRefGoogle Scholar
  21. 21.
    Isaac R, Boura-halfon S, Gurevitch D, Shainskaya A, Levkovitz Y, Zick Y (2013) Selective serotonin reuptake inhibitors (SSRIs) inhibit insulin secretion and action in pancreatic β-cells. J Biol Chem 288:5682–5693CrossRefPubMedGoogle Scholar
  22. 22.
    Deponte M (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 1830:3217–3266CrossRefPubMedGoogle Scholar
  23. 23.
    Karplus PA, Georg E, Schulz GE (1987) Refined structure of glutathione reductase at 1.54 Å resolution. J Mol Biol 195:701–729CrossRefPubMedGoogle Scholar
  24. 24.
    Berkholz DS, Faber HR, Savvides SN, Karplus PA (2008) Catalytic cycle of human glutathione reductase near 1 Å resolution. J Mol Biol 382:371–384CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bradford MM (1976) A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Carlberg Mannervik B (1988) Purification of flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480Google Scholar
  27. 27.
    Segel IR (1975) Enzyme kinetics: behaviour and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New YorkGoogle Scholar
  28. 28.
    Yu J, Zhou C (2007) Crystal structure of glutathione reductase Glr1 from the yeast Saccharomyces cerevisiae. Proteins 68:972–979CrossRefPubMedGoogle Scholar
  29. 29.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefGoogle Scholar
  31. 31.
    Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sánchez-Linares I, Pérez-Sánchez H, Cecilia JM, García JM (2012) High-throughput parallel blind virtual screening using BINDSURF. BMC Bioinform 13:S13CrossRefGoogle Scholar
  33. 33.
    Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res 43:363–367CrossRefGoogle Scholar
  34. 34.
    Devaurs D, Bouard L, Vaisset M, Zanon C, Al-Bluwi I, Iehl R, Siméon T, Cortés J (2013) MoMA-LigPath: a web server to simulate protein–ligand unbinding. Nucleic Acids Res 41:297–302CrossRefGoogle Scholar
  35. 35.
    Outten CE, Culotta VC (2004) Alternative start sites in Saccharomyces cerevisiae GLR1 gene are responsible for mitochondria and cytosolic isoforms of glutathione reductase. J Biol Chem 279:7785–7791CrossRefPubMedGoogle Scholar
  36. 36.
    Ogus IH, Balk M, Aksoy Y, Muftuoglu M, Ozer N (1998) The effect of oxidative stress on the redox system of the human erythrocytes. In: Ozben T (ed) Free radicals, oxidative stress, and antioxidants: pathological and physiological significance. Plenum Press, New York, pp 25–37CrossRefGoogle Scholar
  37. 37.
    Collinson LP, Dawes IW (1995) Isolation, characterization and overexpression of of the yeast gene, GLR1, encoding glutathione reductase. Gene 156:123–127CrossRefPubMedGoogle Scholar
  38. 38.
    Karplus PA, Pai EF, Schulz GE (1989) A crystallographic study of the glutathione binding site of glutathione reductase at 0.3-nm resolution. Eur J Biochem 178:693–703CrossRefPubMedGoogle Scholar
  39. 39.
    Savvides SN, Karplus PA (1996) Kinetics and crystallographic analysis of human glutathione reductase in complex with a xanthene inhibitor. J Biol Chem 271:8101–8107CrossRefPubMedGoogle Scholar
  40. 40.
    Becker K, Christopherson RI, Cowden WB, Hunt NH, Schirmer RH (1990) Flavin analogues with antimalarial activity as glutathione reductase inhibitors. Biochem Pharmacol 39:59–65CrossRefPubMedGoogle Scholar
  41. 41.
    Schönleben-Janas A, Kirsch P, Mittl PR, Schirmer RH, Krauth-Siegel RL (1996) Inhibition of human glutathione reductase by 10-arylisoalloxazines: crystalline, kinetic, and electrochemical studies. J Med Chem 39:1549–1554CrossRefPubMedGoogle Scholar
  42. 42.
    Kasozi DM, Gromer S, Adler H, Zocher K, Rahlfs S, Wittlin S, Fritz-Wolf K, Schirmer RH, Becker K (2011) The bacterial redox signaller pyocyanin as an antiplasmodial agent: comparisons with its thioanalog methylene blue. Redox Rep 16:154–165CrossRefPubMedGoogle Scholar
  43. 43.
    Kashanian S, Javanmardi S, Chitsazan A, Omidfar K, Paknejad M (2012) DNA-binding studies of fluoxetine antidepressant. DNA Cell Biol 31:1349–1355CrossRefPubMedGoogle Scholar
  44. 44.
    Aoyama K, Nakaki T (2013) Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci 14:21021–21044CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Herbet M, Gawrońska-Grzywacz M, Jagiello-Wójtowicz E (2015) Evaluation of selected biochemical parameters of oxidative stress in rats pretreated with rosuvastatin and fluoxetine. Acta Pol Pharm 72:261–265PubMedGoogle Scholar
  46. 46.
    Chen H, Zha J, Yuan L, Wang Z (2015) Effects of fluoxetine on behaviour, antioxidant enzyme systems, and multixenobiotic resistance in the Asian clam Corbicula fluminea. Chemosphere 119:856–862CrossRefPubMedGoogle Scholar
  47. 47.
    Pacher P, Kecskemeti V (2004) Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns? Curr Pharm Des 10:2463–2475CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL (2009) Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390:191–214CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kulaksiz-Erkmen G, Dalmizrak O, Dincsoy-Tuna G, Dogan A, Ogus IH, Ozer N (2013) Amitriptylin may have a supporting role in cancer treatment by inhibiting glutathione S-transferase pi (GST-π) and alpha (GST-α). J Enzyme Inhib Med Chem 28:131–136CrossRefPubMedGoogle Scholar
  50. 50.
    Townsend DM, Tew KD (2003) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22:7369–7375CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Su F, Hu X, Jia W, Gong C, Song E, Hamar P (2003) Glutathione-S-transferase pi indicates chemotherapy resistance in breast cancer. J Surg Res 133:102–108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medical Biochemistry, Faculty of MedicineNear East UniversityMersin 10Turkey

Personalised recommendations