Advertisement

Population pharmacokinetic reanalysis of a Diazepam PBPK model: a comparison of Stan and GNU MCSim

  • Periklis Tsiros
  • Frederic Y. Bois
  • Aristides Dokoumetzidis
  • Georgia Tsiliki
  • Haralambos SarimveisEmail author
Original Paper

Abstract

The aim of this study is to benchmark two Bayesian software tools, namely Stan and GNU MCSim, that use different Markov chain Monte Carlo (MCMC) methods for the estimation of physiologically based pharmacokinetic (PBPK) model parameters. The software tools were applied and compared on the problem of updating the parameters of a Diazepam PBPK model, using time-concentration human data. Both tools produced very good fits at the individual and population levels, despite the fact that GNU MCSim is not able to consider multivariate distributions. Stan outperformed GNU MCSim in sampling efficiency, due to its almost uncorrelated sampling. However, GNU MCSim exhibited much faster convergence and performed better in terms of effective samples produced per unit of time.

Keywords

Diazepam Population pharmacokinetics PBPK Bayesian GNU MCSim Stan 

Notes

Acknowledgements

We would like to thank Gueorgieva I. for granting us access to the Diazepam data. H. Sarimveis and F. Bois acknowledge financial support by OpenRiskNet (Grant Agreement 731075), a project funded by the European Commission under the Horizon 2020 Programme. Periklis Tsiros acknowledges financial support by the NTUA internal reward Programme Numbered 95/0085.

References

  1. 1.
    Macheras P, Iliadis A (2016) Modeling in pharmacokinetics and pharmacodynamics: homogeneous and heterogeneous approaches. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Tsamandouras N, Rostami-Hodjegan A, Aarons L (2015) Combining the bottom up and top down approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol 79(1):48–55.  https://doi.org/10.1111/bcp.12234 CrossRefGoogle Scholar
  3. 3.
    Clewell HJ, Clewell RA, Andersen ME (2011) Physiologically-based pharmacokinetic (PBPK) modeling and risk assessment. In: Nriagu J (ed) Encyclopedia of environmental health. Elsevier, New York, pp 536–570.  https://doi.org/10.1016/B978-0-444-52272-6.00599-7 CrossRefGoogle Scholar
  4. 4.
    Nestorov I (2003) Whole body pharmacokinetic models. Clin Pharmacokinet 42(10):883–908.  https://doi.org/10.2165/00003088-200342100-00002 CrossRefGoogle Scholar
  5. 5.
    Edginton AN, Theil FP, Schmitt W, Willmann S (2008) Whole body physiologically-based pharmacokinetic models: their use in clinical drug development. Expert Opin Drug Metab Toxicol 4(9):1143–1152.  https://doi.org/10.1517/17425255.4.9.1143 CrossRefGoogle Scholar
  6. 6.
    Wendling T, Dumitras S, Ogungbenro K, Aarons L (2015) Application of a Bayesian approach to physiological modelling of mavoglurant population pharmacokinetics. J Pharmacokinet Pharmacodyn 42(6):639657.  https://doi.org/10.1007/s10928-015-9430-4 CrossRefGoogle Scholar
  7. 7.
    Zhuang X, Lu C (2016) PBPK modeling and simulation in drug research and development. Acta Pharmaceutica Sinica B 6(5):430440.  https://doi.org/10.1016/j.apsb.2016.04.004 CrossRefGoogle Scholar
  8. 8.
    Gelman A, Bois FY, Jiang JM (1996) Physiological pharmacokinetic analysis using population modeling and informative prior distributions. JASA 91(436):1400–12.  https://doi.org/10.2307/2291566 CrossRefGoogle Scholar
  9. 9.
    Wakefield J (1996) The Bayesian analysis of population pharmacokinetic models. J Am Stat Assoc 91(433):6275.  https://doi.org/10.2307/2291383 CrossRefGoogle Scholar
  10. 10.
    Bois FY, Jamei M, Clewell HJ (2010) PBPK modelling of inter-individual variability in the pharmacokinetics of environmental chemicals. Toxicology 278(3):256267.  https://doi.org/10.1016/j.tox.2010.06.007 CrossRefGoogle Scholar
  11. 11.
    Krauss M, Schuppert A (2016) Assessing interindividual variability by Bayesian-PBPK modeling. Drug Dis Today Dis Model 22:15–19.  https://doi.org/10.1016/j.ddmod.2017.08.001 CrossRefGoogle Scholar
  12. 12.
    Krauss M, Tappe K, Schuppert A, Kuepfer L, Goerlitz L (2015) Bayesian population physiologically-based pharmacokinetic (PBPK) approach for a physiologically realistic characterization of interindividual variability in clinically relevant populations. PLoS ONE 10(10):e0139423.  https://doi.org/10.1371/journal.pone.0139423 CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Mezzetti M, Ibrahim JG, Bois FY, Ryan LM, Ngo L, Smith TJ (2003) A Bayesian compartmental model for the evaluation of 1,3-butadiene metabolism. J R Stat Soc Ser C 52:291–305.  https://doi.org/10.1111/1467-9876.00405 CrossRefGoogle Scholar
  14. 14.
    Zurlinden TJ, Reisfeld B (2016) Physiologically based modeling of the pharmacokinetics of acetaminophen and its major metabolites in humans using a Bayesian population approach. Eur J Drug Metab Pharmacokinet 41(3):267–80.  https://doi.org/10.1007/s13318-015-0253-x CrossRefGoogle Scholar
  15. 15.
    Geyer CJ (2011) Introduction to Markov Chain Monte Carlo. In: Brooks S, Gelman A, Jones GL, Meng XL (eds) Handbook of Markov Chain Monte Carlo, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  16. 16.
    Bois FY (2009) GNU MCSim: Bayesian statistical inference for SBML-coded systems biology models. Bioinformatics 25(11):1453–1454.  https://doi.org/10.1093/bioinformatics/btp162 CrossRefGoogle Scholar
  17. 17.
    Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P, Riddell A (2017) Stan: a probabilistic programming language. J Stat Softw  https://doi.org/10.18637/jss.v076.i01 Google Scholar
  18. 18.
    Hoffman MD, Gelman A (2014) The no-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J Mach Learn Res 15:1593–1623Google Scholar
  19. 19.
    Weber S, Gelman A, Lee D, Betancourt M, Vehtari A, Racine-Poon A (2018) Bayesian aggregation of average data. Ann Appl Stat  https://doi.org/10.1214/17-AOAS1122 Google Scholar
  20. 20.
    Langdon G, Gueorguieva I, Aarons L, Karlsson M (2007) Linking preclinical and clinical whole-body physiologically based pharmacokinetic models with prior distributions in NONMEM. Eur J Clin Pharmacol 63(5):485–498.  https://doi.org/10.1007/s00228-007-0264-x CrossRefGoogle Scholar
  21. 21.
    Gueorguieva I, Aarons L, Rowland M (2006) Diazepam pharmacokinetics from preclinical to Phase I using a Bayesian population physiological model with informative prior distributions in WINBUGS. J Pharmacokinet Pharmacodyn 33(5):571594.  https://doi.org/10.1007/s10928-006-9023-3 CrossRefGoogle Scholar
  22. 22.
    Greenblatt DJ, Allen MD, Harmatz JS, Shader RI (1980) Diazepam disposition determinants. Clin Pharmacol Ther 27(3):301312CrossRefGoogle Scholar
  23. 23.
    Gueorguieva II, Nestorov IA, Rowland M (2004) Fuzzy simulation of pharmacokinetic models: case study of whole body physiologically based model of Diazepam. J Pharmacokinet Pharmacodyn 31(3):185213.  https://doi.org/10.1023/B:JOPA.0000039564.35602.78 CrossRefGoogle Scholar
  24. 24.
    Leggett RW, Williams LR, Eckerman KF (1995) A blood circulation model for reference man. Health Phys 69(2):187–201CrossRefGoogle Scholar
  25. 25.
    Nestorov IA (2001) Modelling and simulation of variability and uncertainty in toxicokinetics and pharmacokinetics. Toxicol Lett 120(1–3):411–420CrossRefGoogle Scholar
  26. 26.
    Luecke RH, Wosilait WD, Slikker W Jr, Young JF, Pearce BA (2007) Postnatal growth considerations for PBPK modeling. J Toxicol Environ Health A 70(12):1027–1037.  https://doi.org/10.1080/15287390601172056 CrossRefGoogle Scholar
  27. 27.
    Mould DR, Upton RN (2013) Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol 2(4):e38.  https://doi.org/10.1038/psp.2013.14 CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Stan Development Team (2018) Stan modeling language users guide and reference manual. Version 2(18). http://mc-stan.org
  29. 29.
    Lewandowski D, Kurowicka D, Joe H (2009) Generating random correlation matrices based on vines and extended onion method. J Multivar Anal 100(9):1989–2001.  https://doi.org/10.1016/j.jmva.2009.04.008 CrossRefGoogle Scholar
  30. 30.
    Papaspiliopoulos O, Roberts GO, Skld M (2007) A general framework for the parametrization of hierarchical models. Sta Sci 22(1):59–73CrossRefGoogle Scholar
  31. 31.
    Neal RM (2011) MCMC using Hamiltonian dynamics. In: Brooks S, Gelman A, Jones GL, Meng XL (eds) Handbook of Markov Chain Monte Carlo, 2nd edn. CRC Press, Boca Raton, pp 113–162Google Scholar
  32. 32.
    Monnahan CC, Thorson JT, Branch TA (2018) Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo. Methods Ecol Evol 8:339–348.  https://doi.org/10.1111/2041-210X.12681 CrossRefGoogle Scholar
  33. 33.
    Betancourt M (2017) A conceptual introduction to Hamiltonian Monte Carlo. arXiv:1701.02434v2
  34. 34.
    Betancourt M (2016) Diagnosing suboptimal cotangent disintegrations in Hamiltonian Monte Carlo. arXiv:1604.00695
  35. 35.
    Margossian C, Gillespie B (2017) Differential equation based models in Stan. Stan Conference.  https://doi.org/10.5281/zenodo.1284264 Google Scholar
  36. 36.
    Bois FY, Maszle DR (1997) MCSim: a simulation program. J Stat Softw  https://doi.org/10.1093/bioinformatics/btp162 Google Scholar
  37. 37.
    Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, Woodward CS (2005) SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans Math Soft 31(3):363–96CrossRefGoogle Scholar
  38. 38.
    Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2001) Bayesian data analysis, 3rd edn. CRC Press, Boca Raton, pp 284–287Google Scholar
  39. 39.
    Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472CrossRefGoogle Scholar
  40. 40.
    Betancourt MJ, Girolami M (2013) Hamiltonian Monte Carlo for hierarchical models. arXiv:1312.0906
  41. 41.
    Garcia RI, Ibrahim JG, Wambaugh JF, Kenyon EM, Setzer RW (2015) Identifiability of PBPK models with applications to dimethylarsinic acid exposure. J Pharmacokinet Pharmacodyn 42(6):591–609.  https://doi.org/10.1007/s10928-015-9424-2 CrossRefGoogle Scholar
  42. 42.
    Yates JWT (2006) Structural identifiability of physiologically based pharmacokinetic models. J Pharmacokinet Pharmacodyn 33(4):421–39.  https://doi.org/10.1007/s10928-006-9011-7 CrossRefGoogle Scholar
  43. 43.
    Hsieh NH, Reisfeld B, Bois F, Chiu WA (2018) Applying a global sensitivity analysis workflow to improve the computational efficiencies in physiologically-based pharmacokinetic modeling. Front Pharmacol 9:588.  https://doi.org/10.3389/fphar.2018.00588 CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Carpenter B, Hoffman MD, Brubaker M, Lee D, Li P, Betancourt M (2015) AThe Stan Math Library: reverse-mode automatic differentiation in C++. arXiv:1509.07164

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringNational Technical University of AthensAthensGreece
  2. 2.Unit Modles pour l’Ecotoxicologie et la Toxicologie (METO)Institut National de l’Environnement Industriel et des Risques (INERIS)Verneuil en HalatteFrance
  3. 3.Department of PharmacyUniversity of AthensAthensGreece
  4. 4.ATHENA Research and Innovation CentreAthensGreece

Personalised recommendations