Advertisement

Receptor/gene/protein-mediated signaling connects methylprednisolone exposure to metabolic and immune-related pharmacodynamic actions in liver

  • Vivaswath S. Ayyar
  • Siddharth Sukumaran
  • Debra C. DuBois
  • Richard R. Almon
  • Jun Qu
  • William J. Jusko
Original Paper

Abstract

A multiscale pharmacodynamic model was developed to characterize the receptor-mediated, transcriptomic, and proteomic determinants of corticosteroid (CS) effects on clinically relevant hepatic processes following a single dose of methylprednisolone (MPL) given to adrenalectomized (ADX) rats. The enhancement of tyrosine aminotransferase (TAT) mRNA, protein, and enzyme activity were simultaneously described. Mechanisms related to the effects of MPL on glucose homeostasis, including the regulation of CCAAT-enhancer binding protein-beta (C/EBPβ) and phosphoenolpyruvate carboxykinase (PEPCK) as well as insulin dynamics were evaluated. The MPL-induced suppression of circulating lymphocytes was modeled by coupling its effect on cell trafficking with pharmacogenomic effects on cell apoptosis via the hepatic (STAT3-regulated) acute phase response. Transcriptomic and proteomic time-course profiles measured in steroid-treated rat liver were utilized to model the dynamics of mechanistically relevant gene products, which were linked to associated systemic end-points. While time-courses of TAT mRNA, protein, and activity were well described by transcription-mediated changes, additional post-transcriptional processes were included to explain the lack of correlation between PEPCK mRNA and protein. The immune response model quantitatively discerned the relative roles of cell trafficking versus gene-mediated lymphocyte apoptosis by MPL. This systems pharmacodynamic model provides insights into the contributions of selected molecular events occurring in liver and explores mechanistic hypotheses for the multi-factorial control of clinically relevant pharmacodynamic outcomes.

Graphical Abstract

Keywords

PK/PD systems modeling Pharmacogenomics Proteomics mRNA–protein Methylprednisolone Liver 

Notes

Acknowledgements

This work was supported by the National Institutes of Health—National Institute of General Medical Sciences (Grant GM24211).

Supplementary material

10928_2018_9585_MOESM1_ESM.docx (451 kb)
Supplementary material 1 (DOCX 450 kb)

References

  1. 1.
    Kirwan JR (1995) The effect of glucocorticoids on joint destruction in rheumatoid arthritis. N Engl J Med 333:142–147CrossRefPubMedGoogle Scholar
  2. 2.
    Barnes PJ (1998) Efficacy of inhaled corticosteroids in asthma. J Allergy Clin Immunol 102:531–538CrossRefPubMedGoogle Scholar
  3. 3.
    Ruiz-Irastorza G, Danza A, Khamashta M (2012) Glucocorticoid use and abuse in SLE. Rheumatology 51:1145–1153CrossRefPubMedGoogle Scholar
  4. 4.
    Vegiopoulos A, Herzig S (2007) Glucocorticoids, metabolism and metabolic diseases. Mol Cell Endocrinol 275:43–61CrossRefPubMedGoogle Scholar
  5. 5.
    Yao Z, DuBois DC, Almon RR, Jusko WJ (2008) Pharmacokinetic/pharmacodynamic modeling of corticosterone suppression and lymphocytopenia by methylprednisolone in rats. J Pharm Sci 97:2820–2832CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jusko WJ (1995) Pharmacokinetics and receptor-mediated pharmacodynamics of corticosteroids. Toxicology 102:189–196CrossRefPubMedGoogle Scholar
  7. 7.
    Sukumaran S, Jusko WJ, DuBois DC, Almon RR (2011) Mechanistic modeling of the effects of glucocorticoids and circadian rhythms on adipokine expression. J Pharmacol Exp Ther 337:734–746CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hazra A, DuBois DC, Almon RR, Snyder GH, Jusko WJ (2008) Pharmacodynamic modeling of acute and chronic effects of methylprednisolone on hepatic urea cycle genes in rats. Gene Regul Syst Bio 2:1–19PubMedPubMedCentralGoogle Scholar
  9. 9.
    Hazra A, Pyszczynski N, DuBois DC, Almon RR, Jusko WJ (2007) Modeling receptor/gene-mediated effects of corticosteroids on hepatic tyrosine aminotransferase dynamics in rats: dual regulation by endogenous and exogenous corticosteroids. J Pharmacokinet Pharmacodyn 34:643–667CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jin JY, Almon RR, DuBois DC, Jusko WJ (2003) Modeling of corticosteroid pharmacogenomics in rat liver using gene microarrays. J Pharmacol Exp Ther 307:93–109CrossRefPubMedGoogle Scholar
  11. 11.
    Jin JY, DuBois DC, Almon RR, Jusko WJ (2004) Receptor/gene-mediated pharmacodynamic effects of methylprednisolone on phosphoenolpyruvate carboxykinase regulation in rat liver. J Pharmacol Exp Ther 309:328–339CrossRefPubMedGoogle Scholar
  12. 12.
    Yao Z, Hoffman EP, Ghimbovschi S, DuBois DC, Almon RR, Jusko WJ (2008) Mathematical modeling of corticosteroid pharmacogenomics in rat muscle following acute and chronic methylprednisolone dosing. Mol Pharm 5:328–339CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ayyar VS, DuBois DC, Almon RR, Jusko WJ (2017) Mechanistic multi-tissue modeling of GILZ regulation: integrating circadian gene expression with receptor-mediated corticosteroid pharmacodynamics. J Pharmacol Exp Ther 363:45–57CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Payne SH (2015) The utility of protein and mRNA correlation. Trends Biochem Sci 40:1–3CrossRefPubMedGoogle Scholar
  15. 15.
    Maier T, Güell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583:3966–3973CrossRefPubMedGoogle Scholar
  16. 16.
    Ayyar VS, Almon RR, DuBois DC, Sukumaran S, Qu J, Jusko WJ (2017) Functional proteomic analysis of corticosteroid pharmacodynamics in rat liver: relationship to hepatic stress, signaling, energy regulation, and drug metabolism. J Proteomics 160:84–105CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kamisoglu K, Acevedo A, Almon RR, Coyle S, Corbett S, Dubois DC, Nguyen TT, Jusko WJ, Androulakis IP (2017) Understanding physiology in the continuum: integration of information from multiple -omics levels. Front Pharmacol 8:1–19CrossRefGoogle Scholar
  18. 18.
    Kmiec Z (2001) Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 161:1–151CrossRefGoogle Scholar
  19. 19.
    Rui L (2014) Energy metabolism in the liver. Compr Physiol 4:177–197CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    DuBois DC, Xu ZX, McKay L, Almon RR, Pyszczynski N, Jusko WJ (1995) Differential dynamics of receptor down-regulation and tyrosine aminotransferase induction following glucocorticoid treatment. J Steroid Biochem Mol Biol 54:237–243CrossRefPubMedGoogle Scholar
  21. 21.
    Pilkis SJ, Granner DK (1992) Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol 54:885–909CrossRefPubMedGoogle Scholar
  22. 22.
    Kuo T, McQueen A, Chen TC, Wang JC (2015) Regulation of glucose homeostasis by glucocorticoids. Adv Exp Med Biol 872:99–126CrossRefPubMedGoogle Scholar
  23. 23.
    Jin JY, Jusko WJ (2009) Pharmacodynamics of glucose regulation by methylprednisolone. I. Adrenalectomized rats. Biopharm Drug Dispos 30:21–34CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jin JY, Jusko WJ (2009) Pharmacodynamics of glucose regulation by methylprednisolone. II. Normal rats. Biopharm Drug Dispos 30:35–48CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Palumbo P, Ditlevsen S, Bertuzzi A, De Gaetano A (2013) Mathematical modeling of the glucose–insulin system: a review. Math Biosci 244:69–81CrossRefPubMedGoogle Scholar
  26. 26.
    Baumann H, Prowse KR, Marinković S, Won KA, Jahreis GP (1989) Stimulation of hepatic acute phase response by cytokines and glucocorticoids. Ann N Y Acad Sci 557:280–296CrossRefPubMedGoogle Scholar
  27. 27.
    Wald JA, Jusko WJ (1994) Prednisolone pharmacodynamics: leukocyte trafficking in the rat. Life Sci 55:PL371–PL378CrossRefPubMedGoogle Scholar
  28. 28.
    Nouri-Nigjeh E, Sukumaran S, Tu C, Li J, Shen X, Duan X, DuBois DC, Almon RR, Jusko WJ, Qu J (2014) Highly multiplexed and reproducible ion-current-based strategy for large-scale quantitative proteomics and the application to protein expression dynamics induced by methylprednisolone in 60 rats. Anal Chem 86:8149–8157CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Almon RR, DuBois DC, Brandenburg EH, Shi W, Zhang S, Straubinger RM, Jusko WJ (2002) Pharmacodynamics and pharmacogenomics of diverse receptor-mediated effects of methylprednisolone in rats using microarray analysis. J Pharmacokinet Pharmacodyn 29:103–129CrossRefPubMedGoogle Scholar
  30. 30.
    Tu C, Li J, Sheng Q, Zhang M, Qu J (2014) Systematic assessment of survey scan and MS2-based abundance strategies for label-free quantitative proteomics using high-resolution MS data. J Proteome Res 13:2069–2079CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Haughey DB, Jusko WJ (1988) Analysis of methylprednisolone, methylprednisone and corticosterone for assessment of methylprednisolone disposition in the rat. J Chromatogr 430:241–248CrossRefPubMedGoogle Scholar
  32. 32.
    Diamondstone TI (1966) Assay of tyrosine transaminase activity by conversion of p-hydroxyphenylpyruvate to p-hydroxybenzaldehyde. Anal Biochem 16:395–401CrossRefGoogle Scholar
  33. 33.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  34. 34.
    Hazra A, Pyszczynski N, DuBois DC, Almon RR, Jusko WJ (2007) Pharmacokinetics of methylprednisolone after intravenous and intramuscular administration in rats. Biopharm Drug Dispos 28:263–273CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ramakrishnan R, DuBois DC, Almon RR, Pyszczynski NA, Jusko WJ (2002) Fifth-generation model for corticosteroid pharmacodynamics: application to steady-state receptor down-regulation and enzyme induction patterns during seven-day continuous infusion of methylprednisolone in rats. J Pharmacokinet Pharmacodyn 29:1–24CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hazra A, DuBois DC, Almon RR, Jusko WJ (2007) Assessing the dynamics of nuclear glucocorticoid-receptor complex: adding flexibility to gene expression modeling. J Pharmacokinet Pharmacodyn 34:333–354CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Scott DK, Stromstedt PE, Wang JC, Granner DK (1998) Further characterization of the glucocorticoid response unit in the phosphoenolpyruvate carboxykinase gene. The role of the glucocorticoid receptor-binding sites. Mol Endocrinol 12:482–491CrossRefPubMedGoogle Scholar
  38. 38.
    Jurado LA, Song S, Roesler WJ, Park EA (2002) Conserved amino acids within CCAAT enhancer-binding proteins (C/EBP(alpha) and beta) regulate phosphoenolpyruvate carboxykinase (PEPCK) gene expression. J Biol Chem 277:27606–27612CrossRefPubMedGoogle Scholar
  39. 39.
    Park EA, Gurney AL, Nizielski SE, Hakimi P, Cao Z, Moorman A, Hanson RW (1993) Relative roles of CCAAT/enhancer-binding protein beta and cAMP regulatory element-binding protein in controlling transcription of the gene for phosphoenolpyruvate carboxykinase (GTP). J Biol Chem 268:613–619PubMedGoogle Scholar
  40. 40.
    Park EA, Roesler WJ, Liu J, Klemm DJ, Gurney AL, Thatcher JD, Shuman J, Friedman A, Hanson RW (1990) The role of the CCAAT/enhancer-binding protein in the transcriptional regulation of the gene for phosphoenolpyruvate carboxykinase (GTP). Mol Cell Biol 10:6264–6272CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183CrossRefPubMedGoogle Scholar
  42. 42.
    Jungmann RA, Wang XS, Milkowski DM, Short ML (1992) Glucocorticoid induction of CRE-binding protein isoform mRNAs in rat C6 glioma cells. Nucleic Acids Res 20:825–829CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Woltje M, Tschoke B, von Bulow V, Westenfeld R, Denecke B, Graber S, Jahnen-Dechent W (2006) CCAAT enhancer binding protein beta and hepatocyte nuclear factor 3beta are necessary and sufficient to mediate dexamethasone-induced up-regulation of alpha2HS-glycoprotein/fetuin-A gene expression. J Mol Endocrinol 36:261–277CrossRefPubMedGoogle Scholar
  44. 44.
    Imai E, Miner JN, Mitchell JA, Yamamoto KR, Granner DK (1993) Glucocorticoid receptor-cAMP response element-binding protein interaction and the response of the phosphoenolpyruvate carboxykinase gene to glucocorticoids. J Biol Chem 268:5353–5356PubMedGoogle Scholar
  45. 45.
    Cho H, Park OH, Park J, Ryu I, Kim J, Ko J, Kim YK (2015) Glucocorticoid receptor interacts with PNRC2 in a ligand-dependent manner to recruit UPF1 for rapid mRNA degradation. Proc Natl Acad Sci USA 112:E1540–E1549CrossRefPubMedGoogle Scholar
  46. 46.
    Park OH, Park J, Yu M, An H-T, Ko J, Kim YK (2016) Identification and molecular characterization of cellular factors required for glucocorticoid receptor-mediated mRNA decay. Genes Dev 30:2093–2105CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sun YN, Jusko WJ (1998) Transit compartments versus gamma distribution function to model signal transduction processes in pharmacodynamics. J Pharm Sci 87:732–737CrossRefPubMedGoogle Scholar
  48. 48.
    McPherson CS, Lawrence AJ (2007) The nuclear transcription factor CREB: involvement in addiction, deletion models and looking forward. Curr Neuropharmacol 5:202–212CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Fisher LE, Ludwig EA, Jusko WJ (1992) Pharmacoimmunodynamics of methylprednisolone: trafficking of helper T lymphocytes. J Pharmacokinet Biopharm 20:319–331CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Wald JA, Salazar DE, Chen HY, Jusko WJ (1991) Two-compartment basophil cell trafficking model for methylprednisolone pharmacodynamics. J Pharmacokinet Biopharm 19:521–536CrossRefPubMedGoogle Scholar
  51. 51.
    Fauci AS, Dale DC (1975) The effect of hydrocortisone on the kinetics of normal human lymphocytes. Blood 46:235–243PubMedGoogle Scholar
  52. 52.
    Gruver-Yates AL, Cidlowski JA (2013) Tissue-specific actions of glucocorticoids on apoptosis: a double-edged sword. Cells 2:202–223CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Cidlowski JA, King KL, Evans-Storms RB, Montague JW, Bortner CD, Hughes FM Jr (1996) The biochemistry and molecular biology of glucocorticoid-induced apoptosis in the immune system. Recent Prog Horm Res 51:457–490PubMedGoogle Scholar
  54. 54.
    Ahmed ST, Darnell JE (2009) Serpin B3/B4, activated by STAT3, promote survival of squamous carcinoma cells. Biochem Biophys Res Commun 378:821–825CrossRefPubMedGoogle Scholar
  55. 55.
    Dasgupta M, Dermawan JKT, Willard B, Stark GR (2015) STAT3-driven transcription depends upon the dimethylation of K49 by EZH2. Proc Natl Acad Sci USA 112:3985–3990CrossRefPubMedGoogle Scholar
  56. 56.
    Schaefer TS, Sanders LK, Park OK, Nathans D (1997) Functional differences between Stat3a and Stat3b. Mol Cell Biol 17:5307–5316CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    D’Argenio D, Schumitzky A, Wang X (2009) ADAPT 5 user’s guide: Pharmacokinetic/pharmacodynamic systems analysis softwareGoogle Scholar
  58. 58.
    Ramakrishnan R, DuBois DC, Almon RR, Pyszczynski NA, Jusko WJ (2002) Pharmacodynamics and pharmacogenomics of methylprednisolone during 7-day infusions in rats. J Pharmacol Exp Ther 300:245–256CrossRefPubMedGoogle Scholar
  59. 59.
    Sun YN, DuBois DC, Almon RR, Jusko WJ (1998) Fourth-generation model for corticosteroid pharmacodynamics: a model for methylprednisolone effects on receptor/gene-mediated glucocorticoid receptor down-regulation and tyrosine aminotransferase induction in rat liver. J Pharmacokinet Biopharm 26:289–317CrossRefPubMedGoogle Scholar
  60. 60.
    Salinas M, Wallace R, Grisolia S (1974) Comparative studies in vivo and in vitro of rat-liver enzymes. Eur J Biochem 44:375–381CrossRefPubMedGoogle Scholar
  61. 61.
    Hopgood MF, Ballard FJ (1973) Synthesis and degradation of phosphoenolpyruvate carboxylase in rat liver and adipose tissue. Changes during a starvation-re-feeding cycle. Biochem J 134:445–453CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Siewert E, Muller-Esterl W, Starr R, Heinrich PC, Schaper F (1999) Different protein turnover of interleukin-6-type cytokine signalling components. Eur J Biochem 265:251–257CrossRefPubMedGoogle Scholar
  63. 63.
    Boudinot FD, D’Ambrosio R, Jusko WJ (1986) Receptor-mediated pharmacodynamics of prednisolone in the rat. J Pharmacokinet Biopharm 14:469–493CrossRefPubMedGoogle Scholar
  64. 64.
    Nichols AI, Boudinot FD, Jusko WJ (1989) Second generation model for prednisolone pharmacodynamics in the rat. J Pharmacokinet Biopharm 17:209–227CrossRefPubMedGoogle Scholar
  65. 65.
    Kamisoglu K, Sukumaran S, Nouri-Nigjeh E, Tu C, Li J, Shen X, Duan X, Qu J, Almon RR, DuBois DC, Jusko WJ, Androulakis IP (2015) Tandem analysis of transcriptome and proteome changes after a single dose of corticosteroid: a systems approach to liver function in pharmacogenomics. OMICS 19:80–91CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Sun YN, DuBois DC, Almon RR, Pyszczynski NA, Jusko WJ (1998) Dose-dependence and repeated-dose studies for receptor/gene-mediated pharmacodynamics of methylprednisolone on glucocorticoid receptor down-regulation and tyrosine aminotransferase induction in rat liver. J Pharmacokinet Biopharm 26:619–648CrossRefPubMedGoogle Scholar
  67. 67.
    Fang J, Sukumaran S, Dubois DC, Almon RR, Jusko WJ (2013) Meta-modeling of methylprednisolone effects on glucose regulation in rats. PLoS ONE 8:e81679CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Mager DE, Lin SX, Blum RA, Lates CD, Jusko WJ (2003) Dose equivalency evaluation of major corticosteroids: pharmacokinetics and cell trafficking and cortisol dynamics. J Clin Pharmacol 43:1216–1227CrossRefPubMedGoogle Scholar
  69. 69.
    Stark JG, Werner S, Homrighausen S, Tang Y, Krieg M, Derendorf H, Moellmann H, Hochhaus G (2006) Pharmacokinetic/pharmacodynamic modeling of total lymphocytes and selected subtypes after oral budesonide. J Pharmacokinet Pharmacodyn 33:441–459CrossRefPubMedGoogle Scholar
  70. 70.
    Kushner I, Rzewnicki DL (1994) The acute phase response: general aspects. Baillieres Clin Rheumatol 8:513–530CrossRefPubMedGoogle Scholar
  71. 71.
    Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524CrossRefPubMedGoogle Scholar
  72. 72.
    Jusko WJ (2013) Moving from basic toward systems pharmacodynamic models. J Pharm Sci 102:2930–2940CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Mager DE, Kimko HHC (2016) Systems Pharmacology and Pharmacodynamics: An Introduction. In: Mager DE, Kimko HHC (eds) Systems Pharmacology and Pharmacodynamics. Springer International Publishing, Cham, Switzerland, pp 3–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesState University of New York at BuffaloBuffaloUSA
  2. 2.Department of Biological SciencesState University of New York at BuffaloBuffaloUSA

Personalised recommendations