Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Evaluation of Crosslinking Effect on Thermo-mechanical, Acoustic Insulation and Water Absorption Performance of Biomass-Derived Cellulose Cryogels

  • 11 Accesses

Abstract

Cellulose cryogels crosslinked with epichlorohydrin (ECH) were successfully developed from kenaf core biomass via green urea/alkaline solvent system. The effect of ECH concentration (from 3 to 9 wt%) on the pore structure, density, morphology, thermal stability, mechanical properties, water absorption performance and acoustic insulation of cellulose cryogels were studied. It was found that the introduction of ECH affected the porosity and pore volume as well as density and water absorption of cryogels. The increase percentage of ECH has delayed the thermal decomposition of the cellulose cryogels thereby improving their thermal stability. Moreover, the compress stress and the sound absorption coefficient of the cellulose cryogels were enhanced significantly by about 50% and 27%, respectively. This work provides a facile approach to produce cost-effective biomass-derived cellulose cryogels with improved mechanical and thermal stability properties as well as acoustic insulation for preliminary studies of industrial applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Fanun M (2014) The role of colloidal systems in environmental protection. Elsevier, New York

  2. 2.

    Baetens R, Jelle BP, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energy Build 43(4):761–769

  3. 3.

    Briga-Sa A, Nascimento D, Teixeira N, Pinto J, Caldeira F, Varum H, Paiva A (2013) Textile waste as an alternative thermal insulation building material solution. Constr Build Mater 38:155–160

  4. 4.

    Zhu X, Kim B-J, Wang Q, Wu Q (2013) Recent advances in the sound insulation properties of bio-based materials. BioResources 9(1):1764–1786

  5. 5.

    Gan S, Zakaria S, Chia CH, Kaco H (2018) Effect of graphene oxide on thermal stability of aerogel bio-nanocomposite from cellulose-based waste biomass. Cellulose 25(9):5099–5112

  6. 6.

    Chen RS, Ahmad S, Gan S, MaA Tarawneh (2019) High loading rice husk green composites: dimensional stability, tensile behavior and prediction, and combustion properties. J Thermoplast Compos Mater.https://doi.org/10.1177/0892705718815536

  7. 7.

    Seddeq HS, Aly NM, Marwa AA, Elshakankery M (2013) Investigation on sound absorption properties for recycled fibrous materials. J Ind Text 43(1):56–73

  8. 8.

    Abdullah AH, Azharia A, Salleh FM (2015) Sound absorption coefficient of natural fibres hybrid reinforced polyester composites. J Teknol 76(9):31–36

  9. 9.

    Zaveri MD (2004) Absorbency characteristics of kenaf core particles. North Carolina State University. http://www.lib.ncsu.edu/resolver/1840.16/999

  10. 10.

    Ricciardi P, Belloni E, Cotana F (2014) Innovative panels with recycled materials: thermal and acoustic performance and Life Cycle Assessment. Appl Energy 134:150–162

  11. 11.

    Nguyen ST, Feng J, Ng SK, Wong JP, Tan VB, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf Physicochem Eng Asp 445:128–134

  12. 12.

    Salleh KM, Zakaria S, Gan S, Baharin KW, Ibrahim NA, Zamzamin R (2020) Interconnected macropores cryogel with nano-thin crosslinked network regenerated cellulose. Int J Biol Macromol 148:11–19

  13. 13.

    Feng J, Le D, Nguyen ST, Nien VTC, Jewell D, Duong HM (2016) Silica cellulose hybrid aerogels for thermal and acoustic insulation applications. Colloids Surf Physicochem Eng Asp 506:298–305

  14. 14.

    Han Y, Zhang X, Wu X, Lu C (2015) Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures. ACS Sustain Chem Eng 3(8):1853–1859

  15. 15.

    Toledo PVO, Marques LR, Petri DFS (2019) Recyclable xanthan/TiO2 composite cryogels towards the photodegradation of Cr(VI) ions and methylene blue dye. Int J Polym Sci.https://doi.org/10.1155/2019/8179842

  16. 16.

    Li J, Wang Y, Zhang L, Xu Z, Dai H, Wu W (2019) Nanocellulose/gelatin composite cryogels for controlled drug release. ACS Sustain Chem Eng 7(6):6381–6389

  17. 17.

    Cheng H, Li Y, Wang B, Mao Z, Xu H, Zhang L, Zhong Y, Sui X (2018) Chemical crosslinking reinforced flexible cellulose nanofiber-supported cryogel. Cellulose 25(1):573–582

  18. 18.

    Lazzari LK, Zampieri VB, Neves RM, Zanini M, Zattera AJ, Baldasso C (2019) A study on adsorption isotherm and kinetics of petroleum by cellulose cryogels. Cellulose 26(2):1231–1246

  19. 19.

    In E, Naguib HE (2011) Development of mechanically stable polymer-based silica aerogel. Cell Polym 30(1):1

  20. 20.

    Thapliyal PC, Singh K (2014) Aerogels as promising thermal insulating materials: an overview. J Mater.https://doi.org/10.1155/2014/127049

  21. 21.

    Vareda JP, Maximiano P, Cunha LP, Ferreira AF, Simões PN, Durães L (2018) Effect of different types of surfactants on the microstructure of methyltrimethoxysilane-derived silica aerogels: a combined experimental and computational approach. J Colloid Interface Sci. 512(Supplement C):64–76

  22. 22.

    Cotana F, Pisello AL, Moretti E, Buratti C (2014) Multipurpose characterization of glazing systems with silica aerogel: in-field experimental analysis of thermal-energy, lighting and acoustic performance. Build Environ 81:92–102

  23. 23.

    Gan S, Zakaria S, Jaafar SNS (2017) Enhanced mechanical properties of hydrothermal carbamated cellulose nanocomposite film reinforced with graphene oxide. Carbohydr Polym 172:284–293

  24. 24.

    Liao Q, Su X, Zhu W, Hua W, Qian Z, Liu L, Yao J (2016) Flexible and durable cellulose aerogels for highly effective oil/water separation. RSC Adv 6(68):63773–63781

  25. 25.

    Luo X, Zhang L (2013) New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Res Int 52(1):387–400

  26. 26.

    Neithalath N, Weiss J, Olek J (2004) Acoustic performance and damping behavior of cellulose–cement composites. Cem Concr Compos 26(4):359–370

  27. 27.

    Liu H, Wang A, Xu X, Wang M, Shang S, Liu S, Song J (2016) Porous aerogels prepared by crosslinking of cellulose with 1, 4-butanediol diglycidyl ether in NaOH/urea solution. RSC Adv 6(49):42854–42862

  28. 28.

    Roy S, Hossain A (2008) Modeling of stiffness, strength, and structure–property relationship in crosslinked silica aerogel. In: Kwon YW, Allen DH, Talreja R (eds) Multiscale modeling and simulation of composite materials and structures. Springer, Boston

  29. 29.

    Lu P, Hsieh Y-L (2012) Cellulose isolation and core–shell nanostructures of cellulose nanocrystals from chardonnay grape skins. Carbohydr Polym 87(4):2546–2553

  30. 30.

    Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2006) Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels. Chem Mater 18(2):285–296

  31. 31.

    Shi J, Lu L, Guo W, Liu M, Cao Y (2015) On preparation, structure and performance of high porosity bulk cellulose aerogel. Plast Rubber Compos 44(1):26–32

  32. 32.

    Sathi SG, Jang JY, Jeong KU, Nah C (2016) Thermally stable bromobutyl rubber with a high crosslinking density based on a 4, 4′-bismaleimidodiphenylmethane curing agent. J Appl Polym Sci.https://doi.org/10.1002/app.44092

  33. 33.

    Chen B, Zheng Q, Zhu J, Li J, Cai Z, Chen L, Gong S (2016) Mechanically strong fully biobased anisotropic cellulose aerogels. RSC Adv 6(99):96518–96526

  34. 34.

    Biswal D, Singh R (2004) Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 57(4):379–387

  35. 35.

    Mi Q-y, Ma S-r, Yu J, He J-s, Zhang J (2016) Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain Chem Eng 4(3):656–660

  36. 36.

    Mane S, Ponrathnam S, Chavan N (2015) Effect of chemical cross-linking on properties of polymer microbeads: a review. Can Chem Trans 3(4):473–485

  37. 37.

    Si Y, Yu J, Tang X, Ge J, Ding B (2014) Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun 5:5802

  38. 38.

    Wang L, Sánchez-Soto M (2015) Green bio-based aerogels prepared from recycled cellulose fiber suspensions. RSC Adv 5(40):31384–31391

  39. 39.

    Wang M, Anoshkin IV, Nasibulin AG, Korhonen JT, Seitsonen J, Pere J, Kauppinen EI, Ras RH, Ikkala O (2013) Modifying native nanocellulose aerogels with carbon nanotubes for mechanoresponsive conductivity and pressure sensing. Adv Mater 25(17):2428–2432

  40. 40.

    Voorhaar L, Hoogenboom R (2016) Supramolecular polymer networks: hydrogels and bulk materials. Chem Soc Rev 45(14):4013–4031

  41. 41.

    Salleh KM, Zakaria S, Sajab MS, Gan S, Kaco H (2019) Superabsorbent hydrogel from oil palm empty fruit bunch cellulose and sodium carboxymethylcellulose. Int J Biol Macromol 131:50–59

  42. 42.

    Mamtaz H, Fouladi MH, Al-Atabi M, Narayana Namasivayam S (2016) Acoustic absorption of natural fiber composites. J Eng.https://doi.org/10.1155/2016/5836107

  43. 43.

    TsujiuchiI N, Koizumi T, Ohshima Y, Kitagawa T (2002) An optimal design and application of sound-absorbing material made of exploded bamboo fibers. In: Conference: 2005, IMAC-XXIII: Conference and Exposition of Structural Dynamics, pp. 1–7

  44. 44.

    Motahari S, Javadi H, Motahari A (2015) Silica-aerogel cotton composites as sound absorber. J Mater Civ Eng 27(9):04014237

  45. 45.

    Koizumi T, Tsujiuchi N, Adachi A (2002) The development of sound absorbing materials using natural bamboo fibers. WIT Trans Built Environ.https://doi.org/10.11372/souonseigyo1977.27.210

  46. 46.

    Swift M, Bris P, Horoshenkov K (1999) Acoustic absorption in re-cycled rubber granulate. Appl Acoust 57(3):203–212

  47. 47.

    John FT, Conroy BHSCDANSPMN (1999) Microscale thermal relaxation during acoustic propagation in aerogel and other porous media. Microscale Thermophys Eng 3(3):199–215

  48. 48.

    Eskandari N, Motahari S, Atoufi Z, Hashemi Motlagh G, Najafi M (2017) Thermal, mechanical, and acoustic properties of silica-aerogel/UPVC composites. J Appl Polym Sci.https://doi.org/10.1002/app.44685

  49. 49.

    Padzil FNM, Zakaria S, Chia CH, Jaafar SNS, Kaco H, Gan S, Ng P (2015) Effect of acid hydrolysis on regenerated kenaf core membrane produced using aqueous alkaline–urea systems. Carbohydr Polym 124(0):164–171

  50. 50.

    Gan S, Zakaria S, Chia CH, Chen RS, Ellis AV, Kaco H (2017) Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate. PLoS ONE 12(3):e0173743

Download references

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for the financial support via the research project Grant TRGS/1/2019/UKM/02/1/2 and DIP-2018-033. The authors would like to thank the Director General of Malaysian Palm Oil Board (MPOB) for his permission to publish this article. The authors are also thankful to the Centre for Research and Instrumentation Management (CRIM) at UKM for providing the testing services.

Author information

Correspondence to Sinyee Gan or Sarani Zakaria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moosavi, S., Gan, S., Chia, C.H. et al. Evaluation of Crosslinking Effect on Thermo-mechanical, Acoustic Insulation and Water Absorption Performance of Biomass-Derived Cellulose Cryogels. J Polym Environ (2020). https://doi.org/10.1007/s10924-020-01676-0

Download citation

Keywords

  • Regenerated cellulose
  • Sound insulation
  • Biomaterials
  • Compression
  • Thermal stability