Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of Various Methods of Chemical Modification of Lignocellulose Hazelnut Shell Waste on a Newly Synthesized Bio-based Epoxy Composite

Abstract

In this study, a novel bio-based epoxy resin (ESA) with curable double bonds was synthesized by esterification reaction between sebacic acid (SAc) and epichlorohydrin (ECH). Its chemical structure was confirmed by FT-IR and 1H NMR. Untreated, alkali treated, acrylic acid (AcA)- and acetic anhydride (AA) modified hazelnut shell waste (HSh) were used as inexpensive reinforcing materials in the ESA matrix system. The composites were prepared with HSh in varied per cent values (10–50 wt%) using the casting technique. The effects of chemical modification and amount of reinforcement materials on the properties of the composites were investigated. The composites were characterized using mechanical tests, as well as SEM, XRD, TGA, and contact angle measurement. The morphological results indicate an improvement in adhesion between the HSh fillers and ESA matrix upon chemical treatments. The modified HShs reinforced composites showed an increase of 7.7–46.2% in elongation at break when compared to the untreated HSh reinforced composite at more appropriate 20 wt% of filler. Also, tensile strengths of all chemically modified HSh composites are higher than that obtained with neat ESA and untreated HSh composites. It was observed that 20 wt% AA-modified HSh composite exhibited higher tensile strength (66 MPa) and elasticity modulus E (6.72 GPa) values. The TGA analysis showed that the HShs can significantly improve the thermal stability of neat ESA. Vicat softening temperature (VST) of composites was obtained higher than epoxy matrix. Additionally, all composites exhibited hydrophobic surfaces. The incorporation of HSh fillers reduces the wetting and hydrophilicity of synthesized epoxy resin.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Battegazzore D, Frache A (2019) J Polym Environ 27:2213

  2. 2.

    Pilla S (2011) Handbook of bioplastics and biocomposites engineering applications. Wiley, New Jersey

  3. 3.

    Miyagawa H, Misra M, Drzal LT, Mohanty AK (2005) J Polym Environ 13:87

  4. 4.

    Sarwono A, Man Z, Bustam MA (2012) J Polym Environ 20:540

  5. 5.

    Niedermann P, Szebényi G, Toldy A (2014) J Polym Environ 22:525

  6. 6.

    Park S-J, Jin F-L, Lee J-R (2004) Macromol Chem Phys 205:2048

  7. 7.

    Thulasiraman V, Rakesh S, Sarojadevi M (2009) Polym Compos 30:49

  8. 8.

    Auvergne R, Caillol S, David G, Boutevin B, Pascault J-P (2014) Chem Rev 114:1082

  9. 9.

    Ma S, Liu X, Jiang Y, Tang Z, Zhang C, Zhu J (2013) Green Chem 15:245

  10. 10.

    Bledzki A, Jaszkiewicz A (2010) Compos Sci Technol 70:1687

  11. 11.

    Kocaman S, Karaman M, Gursoy M, Ahmetli G (2017) Carbohydr Polym 159:48

  12. 12.

    Álvarez-Chávez C, Sánchez-Acosta D, Encinas-Encinas J, Esquer J, Quintana-Owen P, Madera-Santana T (2017) Int J Polym Sci 2017:1

  13. 13.

    Battegazzore D, Noori A, Frache A (2019) J Compos Mater 53:783

  14. 14.

    Demirkaya E, Dal O, Yüksel A (2019) J Supercrit Fluids 150:11

  15. 15.

    Battegazzore D, Alongi J, Frache A (2014) J Polym Environ 22:88

  16. 16.

    Mitra B (2014) Def Sci J 64:244

  17. 17.

    Balart JF, Fombuena V, Fenollar O, Boronat T, Sánchez-Nacher L (2016) Compos B 86:168

  18. 18.

    Balart JF, García-Sanoguera D, Balart R, Boronat T, Sánchez-Nacher L (2018) Polym Compos 9:848

  19. 19.

    Matějka V, Fu Z, Kukutschová J, Qi S, Jiang S, Zhang X, Yun R, Vaculik M, Heliova M, Lu Y (2013) Mater Design 51:847

  20. 20.

    Bryśkiewicz A, Zieleniewska M, Przyjemska K, Chojnacki P, Ryszkowska J (2016) Polym Degrad Stab 132:32

  21. 21.

    Guru M, Aruntas Y, Tuzun FN, Bilici I (2009) Fire Mater 33:413

  22. 22.

    Demirer H, Kartal I, Yıldırım A, Büyükkaya K (2018) Acta Phys Polon A 134:254

  23. 23.

    Müller M, Valášek P, Linda M, Petrásek S (2018) Sci Agric Bohem 49:53

  24. 24.

    Salasinska K, Barczewski M, Borucka M, Górny RL, Kozikowski P, Celiński M, Gajek A (2019) Polymers 11:1234

  25. 25.

    Gu H (2009) Mater Design 30:3931

  26. 26.

    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Lab Anal Proced 1617:1

  27. 27.

    Haykiri-Acma H, Yaman S (2007) Fuel 86:373

  28. 28.

    Sonia A, Priya Dasan K (2013) Carbohydr Polym 92:668

  29. 29.

    Obi Reddy K, Uma Maheswari C, Shukla M, Song JI, Varada Rajulu A (2013) Compos B 44:433

  30. 30.

    Prasad PN, Mark JE, Kandil SH, Kafafi ZH (1998) Science and technology of polymers and advanced materials. Springer, New York

  31. 31.

    Narendar R, Priya Dasan K (2014) Compos B 56:770

  32. 32.

    Kocaman S, Ahmetli G (2016) Prog Org Coat 97:53

  33. 33.

    Mandhakini M, Chandramohan A, Rangaraju Vengatesan M, Alagar M (2011) High Perform Polym 23:403

  34. 34.

    Mustata FR, Tudorachi N, Bicu I (2013) Ind Eng Chem Res 52:17099

  35. 35.

    Wang R, Schuman Th, Vuppalapati RR, Chandrashekhara K (2014) Green Chem 16:1871

  36. 36.

    Yang X, Wang Ch, Li Sh, Huang K, Li M, Mao W, Cao Sh, Xia J (2017) RSC Adv 7:238

  37. 37.

    Mellor BG (2006) Surface coatings for protection against wear. CRC Press, Boca Raton

  38. 38.

    Guo X, Xin J, Huang J, Wolcott MP, Zhang J (2019) Polymer 183:121859

  39. 39.

    Melo JDD, Carvalho LFM, Medeiros AM, Souto CRO, Paskocimas CA (2012) Compos B 43:2835

  40. 40.

    Sepe R, Bollino F, Boccarusso L, Caputo F (2018) Compos B 133:217

  41. 41.

    Erdik E (2008) Spectroscopic methods in organic chemistry. Gazi Bookstore, Ankara

  42. 42.

    Wang H, Li FS, Zhu BW, Guo L, Yang Y, Hao R, Wang H, Liu Y, Wang W, Guo X, Chen X (2016) Adv Funct Mater 26:3472

  43. 43.

    Hirose S, Hatakeyama T, Hatakeyama H (2005) Thermochim Acta 431:76

  44. 44.

    Alemdar A, Sain M (2008) Compos Sci Technol 68:557

  45. 45.

    Mwaikambo LY, Ansell MP (2002) J Appl Polym Sci 84:2222

  46. 46.

    Muensri P, Kunanopparat T, Menut P, Siriwattanayotin S (2011) Compos A 42:173

  47. 47.

    Wada M, Sugiyama J, Okano T (1993) J Appl Polym Sci 49:1491

  48. 48.

    Khawas P, Deka SC (2016) Carbohydr Polym 137:608

  49. 49.

    Laaziz SA, Raji M, Hilali E, Essabir H, Rodrigue D, Bouhfid R, El kacem Qaiss A (2017) Int J Biol Macromol 104:30

  50. 50.

    Battegazzore D, Noori A, Frache A (2019) Polym Compos 40:3429

  51. 51.

    Raju GU, Kumarappa S (2011) J Reinf Plast Compos 30:1029

  52. 52.

    Móczó J, Pukánszky B (2008) J Ind Eng Chem 14:535

  53. 53.

    Gong L-X, Zhao L, Tang L-C, Liu H-Y, Mai Y-W (2015) Compos Sci Technol 121:104

  54. 54.

    Saba N, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M (2017) Int J Biol Macromol 97:190

  55. 55.

    John MJ, Anandjiwala RD (2008) Polym Compos 29:187

  56. 56.

    Kabir MM, Wang H, Lau KT, Cardona F (2012) Compos B 43:2883

  57. 57.

    Zafeiropoulos NE, Dijon GG, Baillie CA (2007) Compos A 38:621

  58. 58.

    Brostow W, Hagg Lobland HE, Khoja S (2015) Mater Lett 159:478

  59. 59.

    Cimino G, Passerini A, Toscano G (2000) Water Res 34:2955

  60. 60.

    Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Compos B 39:933

  61. 61.

    Kwon S-C, Adachi T, Araki W, Yamaji A (2008) Compos B 39:740

  62. 62.

    Zhang S, Cao XY, Ma YM, Ke YC, Zhang JK, Wang FS (2011) eXPRESS Polym Lett 5:581

  63. 63.

    Liyanage CD, Pieris M (2015) Procedia Chem 16:222

  64. 64.

    Guzel G, Sivrikaya O, Deveci H (2016) Compos B 100:1

  65. 65.

    Fombuena V, Sanchez-Nacher L, Samper MD, Juarez D, Balart R (2013) J Am Oil Chem Soc 90:449

  66. 66.

    Slepickova Kasalkova N, Slepicka P, Kolska Z, Svorcik V (2015) In: Aliofkhazraei M (ed) Wetting and wettability, vol 12. IntechOpen, Moscow

  67. 67.

    Gurunathan T, Mohanty S, Nayak SK (2015) Compos A 77:1

  68. 68.

    Gursoy M, Karaman M (2016) Chem Eng J 284:343

  69. 69.

    Brady JE, Durig T, Shang S (2008) Theories and techniques in the characterization of drug substances and excipients. Academic Press, London

  70. 70.

    Ambone T, Joseph S, Deenadayalan E, Mishra S, Jaisankar S, Saravanan P (2017) J Polym Environ 25:1099

  71. 71.

    Barczewski M, Sałasińska K, Szulc J (2019) Polym Test 75:1

  72. 72.

    Panneerdhass R, Gnanavelbabu A, Rajkumar K (2014) Procedia Eng 97:2042

  73. 73.

    Yovial Y, Marthiana W, Duskiardi D, Habibi H (2017) J Agroind 7:56

  74. 74.

    Kocaman S, Ahmetli G (2017) In: Book of abstracts, Baltic Polymer Symposium, Tallinn, Estonia, p 130

  75. 75.

    Boran S (2016) BioResour 11:1741

  76. 76.

    Cipriano JdeP, Zanini NC, Dantas IR, Mulinari DR (2019) J Renew Mater 7:1047

  77. 77.

    Essabir H, Bensalah MO, Rodrigue D, Bouhfid R, Elkacem Qaiss A (2016) Carbohydr Polym 143:70

  78. 78.

    Essabir H, El Achaby M, EI Moukhtar H, Bouhfid R, El kacem Qaiss A (2015) J Bionic Eng 12:129

Download references

Author information

Correspondence to Gulnare Ahmetli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kocaman, S., Ahmetli, G. Effects of Various Methods of Chemical Modification of Lignocellulose Hazelnut Shell Waste on a Newly Synthesized Bio-based Epoxy Composite. J Polym Environ (2020). https://doi.org/10.1007/s10924-020-01675-1

Download citation

Keywords

  • Bioepoxy resin
  • Hazelnut shell waste
  • Chemical modification
  • Composite