Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Tuning Degradation and Mechanical Properties of Poly(l-lactic acid) with Biomass-Derived Poly(l-malic acid)


Poly(l-malic acid) (PLMA) oligomer was used as the minor phase to prepare the blends with poly(l-lactic acid) (PLLA), with the objective to develop fully biomass-derived and biodegradable aliphatic polyester blends with balanced overall performance. The phase behavior and viscoelastic responses reveals that the two phases are thermodynamically immiscible, showing high level of interfacial tension in their blends. Poor phase adhesion and lower mass weight of PLMA results in an evident decrease of mechanical properties of the blends as compared to PLLA. The dilute effect caused by the addition of PLMA, however, promotes the cold crystallization of PLLA. Therefore, the strength and modulus losses of the blends can be remedied well by the annealing in solid state. Besides, the degradation rates can also be regulated by the presence of hydrophilic PLMA phase. In this case, a fully green PLLA/PLMA blend with balanced properties is fabricated. This work also provides useful information developing new applications of PLMA.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356

  2. 2.

    Khanloua HM, Woodfield P, Summerscales J, Francucci G, King B, Talebian S, Foroughi J, Hall W (2018) Estimation of mechanical property degradation of poly(lactic acid) and flax fibre reinforced poly(lactic acid) bio-composites during thermal processing. Measurement 116:367–372

  3. 3.

    Khanlou HM, Woodfield P, Summerscales J, Hall W (2017) Consolidation process boundaries of the degradation of mechanical properties in compression moulding of natural-fibre bio-polymer composites. Polym Degrad Stab 138:115–125

  4. 4.

    Khanlou HM, Hall W, Woodfield P, Summerscales J, Francucci G (2018) The mechanical properties of flax fibre reinforced poly(lactic acid) bio-composites exposed to wet, freezing and humid environments. J Compos Mater 52:835–850

  5. 5.

    Khanlou HM, Hall W, Heitzman MT, Summerscales J, Woodfield P (2016) Technical note: on modelling thermo-chemical degradation of poly(lactic acid). Polym Degrad Stab 134:19–21

  6. 6.

    Chen JX, Lu LL, Wu DF, Yuan LJ, Zhang M, Hua JJ, Xu J (2014) Green poly(ε-caprolactone) composites reinforced with the electrospun polylactide/poly(ε-caprolactone) blend fiber mats. ACS Sustain Chem Eng 2:2102–2110

  7. 7.

    Wu DF, Zhang YS, Zhang M, Zhou WD (2008) Phase behavior and its viscoelastic responses of polylactide/poly(ε-caprolactone) blend. Eur Polym J 44:2171–2183

  8. 8.

    Wu DF, Zhang YS, Yuan LJ, Zhang M, Zhou WD (2010) Viscoelastic interfacial properties of compatibilized polylactide/poly(ε-caprolactone) blend. J Polym Sci B 48:756–765

  9. 9.

    Yokohara T, Yamaguchi M (2008) Structure and properties for biomass-based polyester blends of PLA and PBS. Eur Polym J 44:677–685

  10. 10.

    Shibata M, Inoue Y, Miyoshi M (2006) Mechanical properties, morphology, and crystallization behavior of blends of poly(l-lactide) with poly(butylene succinate-co-l-lactate) and poly(butylene succinate). Polymer 47:3557–3564

  11. 11.

    Wu DF, Yuan LJ, Laredo E, Zhang M, Zhou WD (2012) Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend. Ind Eng Chem Res 51:2290–2298

  12. 12.

    Ouchi T, Fujino A (1989) Synthesis of poly(α-malic acid) and its hydrolysis behavior in vitro. Makromol Chem Phys 190:1523–1530

  13. 13.

    Arnold SC, Lenz RW (1986) Synthesis of stereoregular poly(alkyl malolactonates). Makromol Chem Macromol Symp 6:285–303

  14. 14.

    Guerin P, Vert M, Braud C, Lenz RW (1985) Optically active poly(β-malic-acid). Polym Bull 14:187–192

  15. 15.

    Lee BS, Holler E (2000) β-Poly(l-malate) production by non-growing microplasmodia of physarum polycephalum: effects of metabolic intermediates and inhibitors. FEMS Microbiol Lett 193:69–74

  16. 16.

    Kajiyama T, Taguchi T, Kobayashi H, Kataoka K, Tanaka J (2003) Physicochemical properties of high-molecular-weight poly(α, β-malic acid) synthesized by direct polycondensation. Polym Bull 50:69–75

  17. 17.

    Kajiyama T, Kobayashi H, Taguchi T, Kataoka K, Tanaka J (2004) Improved synthesis with high yield and increased molecular weight of poly(α, β-malic acid) by direct polycondensation. Biomacromol 5:169–174

  18. 18.

    Oyama HT, Tanishima D, Maekawa S (2016) Poly(malic acid-co- l-lactide) as a superb degradation accelerator for poly(l-lactic acid) at physiological conditions. Polym Degrad Stab 134:265–271

  19. 19.

    He B, Wan YQ, Bei JZ, Wang SG (2004) Synthesis and cell affinity of functionalized poly(l-lactide-co-b-malic acid) with high molecular weight. Biomaterials 25:5239–5247

  20. 20.

    He B, Bei JZ, Wang SG (2003) Synthesis and characterization of a functionalized biodegradable copolymer: poly(l-lactide-co-RS-β-malic acid). Polymer 44:989–994

  21. 21.

    Coulembier O, Dege P, Cammas-Marion S, Guérin P, Dubois P (2002) New amphiphilic poly[(r, s)-β-malic acid-b-ε-caprolactone] diblock copolymers by combining anionic and coordination-insertion ring-opening polymerization. Macromolecules 35:9896–9903

  22. 22.

    Coulembier O, Degée P, Gerbaux P, Wantier P, Barbaud C, Flammang R, Guérin P, Dubois P (2005) Synthesis of amphiphilic poly((R, S)-β-malic acid)-graft-poly(ε-caprolactone): “grafting from” and “grafting through” approaches. Macromolecules 38:3141–3150

  23. 23.

    Rieger J, Coulembier O, Dubois P, Bernaerts KV, Du Prez FE, Jérôme R, Jérôme C (2005) Controlled synthesis of an abc miktoarm star-shaped copolymer by sequential ring-opening polymerization of ethylene oxide, benzyl β-malolactonate, and ε-caprolactone. Macromolecules 38:10650–10657

  24. 24.

    Barouti G, Jarnouen K, Cammas-Marion S, Loyer P, Guillaume SM (2015) Polyhydroxyalkanoate-based amphiphilic diblock copolymers as original biocompatible nanovectors. Polym Chem 6:5414–5429

  25. 25.

    Coulembier O, Mespouille L, Hedrick JL, Waymouth RM, Dubois P (2006) Metal-free catalyzed ring-opening polymerization of β-lactones: synthesis of amphiphilic triblock copolymers based on poly(dimethylmalic acid). Macromolecules 39:4001–4008

  26. 26.

    Qiu YX, Wanyan QR, Xie WY, Wang ZF, Chen M, Wu DF (2019) Green and biomass-derived materials with controllable shape memory transition temperatures based on cross-linked poly(l-malic acid). Polymer 180:121733

  27. 27.

    Oyama HT, Tanishima D, Ogawa R (2017) Biologically safe Poly(l-lactic acid) blends with tunable degradation rate: microstructure, degradation mechanism, and mechanical properties. Biomacromol 18:1281–1292

  28. 28.

    Carriere CJ, Cohen A, Arends CB (1989) Estimation of interfacial tension using shape evolution of short fibers. J Rheol 33:681–689

  29. 29.

    Xing PX, Bousmina M, Rodrigue D (2000) Critical experimental comparison between five techniques for the determination of interfacial tension in polymer blends: model system of polystyrene/polyamide-6. Macromolecules 33:8020–8034

  30. 30.

    Wu DF, Lin DP, Zhang J, Zhou WD, Zhang M, Zhang YS, Wang DM, Lin BL (2011) Selective localization of nanofillers: effect on morphology and crystallization of PLA/PCL blends. Macromol Chem Phys 212:613–626

  31. 31.

    Lee HM, Park OO (1994) Rheology and dynamics of immiscible polymer blends. J Rheol 38:1405–1425

  32. 32.

    Yu W, Bousmina M, Grmela M, Zhou CX (2002) Modeling of oscillatory shear flow of emulsions under small and large deformation fields. J Rheol 46:1401–1418

  33. 33.

    Wu DF, Zhang YS, Zhang M, Yu W (2009) Selective localization of multi-walled carbon nanotube in polylactide/poly(ε-caprolactone) blend. Biomacromol 10:417–424

  34. 34.

    Wu DF, Wu L, Zhou WD, Zhang M, Yang T (2010) Crystallization and biodegradation behaviors of polylactide/carbon nanotube composites. Polym Eng Sci 50:1721–1733

  35. 35.

    Fan YJ, Nishida H, Hoshihara S, Shirai Y, Tokiwa Y, Endo T (2003) Pyrolysis kinetics of poly(l-lactide) with carboxyl and calcium salt end structures. Polym Degrad Stab 79:547–562

  36. 36.

    Hakkarainen M, Karlsson S, Albertsson AC (2000) Rapid (bio)degradation of polylactide by mixed culture of compost microorganisms-low molecular weight products and matrix changes. Polymer 41:2331–2338

  37. 37.

    Wu DF, Wu L, Wu LF, Zhang M (2006) Rheology and thermal stability of polylactide/clay nanocomposites. Polym Degrad Stab 91:3149–3155

  38. 38.

    Li SM, McCarthy S (1999) Further investigations on the hydrolytic degradation of poly(DL-lactide). Biomaterial 20:35–44

  39. 39.

    Wu DF, Wu L, Wu LF, Xu B, Zhang M (2008) Comparison between isothermal melt and cold crystallization of polylactide/clay nanocomposites. J Nanosci Nanotechnol 8:1658–1668

  40. 40.

    Wu DF, Wu L, Wu LF, Xu B, Zhang M (2007) Non-isothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci B 45:1100–1113

  41. 41.

    Xu CJ, Chen JX, Wu DF, Chen Y, Lv QL, Wang MQ (2016) Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: a phase interface-property study. Carbohydr Polym 146:58–66

  42. 42.

    Xu CJ, Lv QL, Wu DF, Wang ZF (2017) Polylactide/cellulose nanocrystal composites: a comparative study on cold and melt crystallization. Cellulose 24:2163–2175

  43. 43.

    Kusumi R, Teramoto Y, Nishio Y (2008) Crystallization behavior of poly(ε-caprolactone) grafted onto cellulose alkyl esters: effects of copolymer composition and intercomponent miscibility. Macromol Chem Phys 209:2135–2146

  44. 44.

    Xu CJ, Wu DF, Lv QL, Yan LL (2017) Crystallization temperature as the probe to detect polymer-filler compatibility in the poly(ε-caprolactone) composites with acetylated cellulose nanocrystals. J Phys Chem C 121:18615–18624

  45. 45.

    Kusumi R, Inoue Y, Shirakawa M, Miyashita Y, Nishio Y (2008) Cellulose alkyl ester/poly(ε-caprolactone) blends: characterization of miscibility and crystallization behavior. Cellulose 15:1–16

  46. 46.

    Chen JX, Wu DF, Tam KC, Pan KR, Zheng ZG (2017) Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites. Carbohydr Polym 157:1821–1829

  47. 47.

    Chen JX, Xu CJ, Wu DF, Sha YL, Pan KR, Wang L, Qian AW, Tong W (2015) Insights into the nucleation role of cellulose crystals during crystallization of poly(β-hydroxybutyrate). Carbohydr Polym 134:508–515

  48. 48.

    Ying ZR, Wu DF, Zhang M, Qiu YX (2017) Polylactide/basalt fiber composites with tailorable mechanical properties: effect of surface treatment of fibers and annealing. Compos Struct 176:1020–1027

  49. 49.

    Yang T, Wu DF, Lu LL, Zhang M, Zhou WD (2011) Electrospinning of polylactide and its composites with carbon nanotubes. Polym Compos 32:1280–1288

  50. 50.

    Ying ZR, Wu DF, Xie WY, Wang ZF, Qiu YX, Wei XJ (2018) Rheological and mechanical properties of polylactide nanocomposites reinforced with the cellulose nanofibers with various surface treatments. Cellulose 25:3955–3971

Download references


We gratefully thanks the National Natural Science Foundation of China (51573156) for the financial support.

Author information

Correspondence to Defeng Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wanyan, Q., Qiu, Y., Xie, W. et al. Tuning Degradation and Mechanical Properties of Poly(l-lactic acid) with Biomass-Derived Poly(l-malic acid). J Polym Environ 28, 884–891 (2020).

Download citation


  • Poly(l-lactic acid)
  • Poly(l-malic acid)
  • Mechanical properties
  • Degradation
  • Phase behavior