Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Towards the Production of mcl-PHA with Enriched Dominant Monomer Content: Process Development for the Sugarcane Biorefinery Context

  • 78 Accesses

Abstract

The production of short-chain-length polyhydroxyalkanoates (scl-PHAs) in a sugarcane biorefinery setting has been demonstrated to be an effective strategy to reduce production costs. Medium-chain-length PHA (mcl-PHA) have elastomeric properties and are more suitable for high value-added applications, but its industrial production is not yet established. Mcl-PHA synthesis occurs via different metabolic routes and thus requires distinct microorganisms and substrates compared to scl-PHA. In the present study, sucrose-derived carbohydrates were evaluated as co-substrates for the production of mcl-PHA from decanoic acid (DA). Fermentation strategies were investigated to produce mcl-PHA with enriched dominant monomer content, which is desirable for commercial applications. The mcl-PHA production was investigated in carbon-limited, fed-batch fermentations with wild-type and β-oxidation knockout mutant strains of Pseudomonas putida KT2440. The experimental results demonstrated that a mixture of glucose and fructose was a suitable co-feed with DA for mcl-PHA production, yielding equivalent results to those obtained with starch-derived glucose, a more traditional feedstock for PHA production. The use of a β-oxidation-impaired strain was essential to attain high dominant monomer content. A near-homopolymeric mcl-PHA was produced under exponential feeding, containing 99 mol% of 3-hydroxydecanoate. This work demonstrates the potential for near-homopolymeric mcl-PHA production in a sugarcane biorefinery, using hydrolyzed sucrose and DA.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Rai R, Keshavarz T, Roether JA et al (2011) Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater Sci Eng R Rep 72:29–47. https://doi.org/10.1016/j.mser.2010.11.002

  2. 2.

    Chen GQ, Zhang J (2018) Microbial polyhydroxyalkanoates as medical implant biomaterials. Artif Cells Nanomed Biotechnol 46:1–18. https://doi.org/10.1080/21691401.2017.1371185

  3. 3.

    Koller M, Maršálek L, de Sousa Dias MM, Braunegg G (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol 37:24–38. https://doi.org/10.1016/j.nbt.2016.05.001

  4. 4.

    Koller M, Hesse P, Kutschera C et al (2009) Sustainable embedding of the bioplastic poly-(3-hydroxybutyrate) into the sugarcane industry: principles of a future-oriented technology in Brazil. In: Eyerer P, Weller M, Hubner C (eds) Polymers—opportunities and risks II. The handbook of environmental chemistry. Springer, Berlin, pp 81–96

  5. 5.

    Nonato RV, Mantelatto PE, Rossell CEV (2001) Integrated production of biodegradable plastic, sugar and ethanol. Appl Microbiol Biotechnol 57:1–5. https://doi.org/10.1007/s002530100732

  6. 6.

    Rossell CEV, Mantelatto PE, Agnelli JM, Nascimento J (2006) Sugar-based biorefinery—technology for integrated production of poly (3-hydroxybutyrate), sugar, and ethanol. Biorefiner Process Prod 1:209–226

  7. 7.

    Silva LF, Taciro MK, Raicher G et al (2014) Perspectives on the production of polyhydroxyalkanoates in biorefineries associated with the production of sugar and ethanol. Int J Biol Macromol 71:2–7. https://doi.org/10.1016/j.ijbiomac.2014.06.065

  8. 8.

    Mozejko-Ciesielska J, Szacherska K, Marciniak P (2019) Pseudomonas species as producers of eco-friendly polyhydroxyalkanoates. J Polym Environ 27:1151–1166. https://doi.org/10.1007/s10924-019-01422-1

  9. 9.

    Lowe H, Schmauder L, Hobmeier K et al (2017) Metabolic engineering to expand the substrate spectrum of Pseudomonas putida toward sucrose. Microbiologyopen 6:1–9. https://doi.org/10.1002/mbo3.473

  10. 10.

    Leininger PM, Kilpatrick M (1938) The inversion of sucrose. J Am Chem Soc 60:2891–2899. https://doi.org/10.1021/ja01279a017

  11. 11.

    Gilliland ER, Bixler HJ, O’Connell JE (1971) Catalysis of sucrose inversion in ion-exchange resins. Ind Eng Chem Fundam 10:185–191. https://doi.org/10.1021/i160038a001

  12. 12.

    Chavarría M, Kleijn RJ, Sauer U et al (2012) Regulatory tasks of the phosphoenolpyruvate-phosphotransferase. MBio 3:1–9. https://doi.org/10.1128/mBio.00028-12.Editor

  13. 13.

    Chavarría M, Goñi-Moreno Á, de Lorenzo V, Nikel PI (2016) A metabolic widget adjusts the phosphoenolpyruvate-dependent fructose influx in Pseudomonas putida. mSystems 1:1–15. https://doi.org/10.1128/mSystems.00154-16

  14. 14.

    Kim J, Oliveros JC, Nikel PI et al (2013) Transcriptomic fingerprinting of Pseudomonas putida under alternative physiological regimes. Environ Microbiol Rep 5:883–891. https://doi.org/10.1111/1758-2229.12090

  15. 15.

    Velázquez F, Pflüger K, Cases I et al (2007) The phosphotransferase system formed by PtsP, PtsO, and PtsN proteins controls production of polyhydroxyalkanoates in Pseudomonas putida. J Bacteriol 189:4529–4533. https://doi.org/10.1128/JB.00033-07

  16. 16.

    Diniz SC, Taciro MK, Gomez JG, da Cruz Pradella JG (2004) High-cell-density cultivation of Pseudomonas putida IPT 046 and medium-chain-length polyhydroxyalkanoate production from sugarcane carbohydrates. Appl Biochem Biotechnol 119:51–70. https://doi.org/10.1385/ABAB:119:1:51

  17. 17.

    Urbina L, Wongsirichot P, Corcuera M et al (2018) Application of cider by-products for medium chain length polyhydroxyalkanoate production by Pseudomonas putida KT2440. Eur Polym J 108:1–9. https://doi.org/10.1016/j.eurpolymj.2018.08.020

  18. 18.

    Bengtsson S, Pisco AR, Reis MAM, Lemos PC (2010) Production of polyhydroxyalkanoates from fermented sugar cane molasses by a mixed culture enriched in glycogen accumulating organisms. J Biotechnol 145:253–263. https://doi.org/10.1016/j.jbiotec.2009.11.016

  19. 19.

    Solaiman DKY, Ashby RD, Hotchkiss AT, Foglia TA (2006) Biosynthesis of medium-chain-length poly(hydroxyalkanoates) from soy molasses. Biotechnol Lett 28:157–162. https://doi.org/10.1007/s10529-005-5329-2

  20. 20.

    Sánchez RJ, Schripsema J, Da Silva LF et al (2003) Medium-chain-length polyhydroxyalkanoic acids (PHAmcl) produced by Pseudomonas putida IPT 046 from renewable sources. Eur Polym J 39:1385–1394. https://doi.org/10.1016/S0014-3057(03)00019-3

  21. 21.

    Witholt B, Kessler B (1999) Perspectives of medium chain length poly(hydroxyalkanoates), a versatile set of bacterial bioplastics. Curr Opin Biotechnol 10:279–285

  22. 22.

    Poblete-Castro I, Rodriguez AL, Chi Lam CM, Kessler W (2014) Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains. J Microbiol Biotechnol 24:59–69. https://doi.org/10.4014/jmb.1308.08052

  23. 23.

    Borrero-de Acuña JM, Bielecka A, Häussler S et al (2014) Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microb Cell Fact 13:88. https://doi.org/10.1186/1475-2859-13-88

  24. 24.

    Eggink G, De PW, Huijberts GNM (1992) The role of fatty acid biosynthesis and degradation in the supply of substrates for poly (3-hydroxyalkanoate) formation in Pseudomonas putida. FEMS Microbiol Rev 103:159–163. https://doi.org/10.1016/0378-1097(92)90305-8

  25. 25.

    Haywood GW, Anderson AJ, Dawes EA, Ewing DF (1990) Accumulation of a polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. strain NCIMB 40135. Appl Environ Microbiol 56:3354–3359. https://doi.org/10.1016/0141-8130(91)90053-W

  26. 26.

    Huijberts GNM, Eggink G, De Waard P et al (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3- hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58:536–544

  27. 27.

    Poblete-Castro I, Binger D, Oehlert R, Rohde M (2014) Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions. BMC Biotechnol 14:962. https://doi.org/10.1186/s12896-014-0110-z

  28. 28.

    Sharma PK, Fu J, Cicek N et al (2012) Kinetics of medium-chain-length polyhydroxyalkanoate production by a novel isolate of Pseudomonas putida LS46. Can J Microbiol 58:982–989. https://doi.org/10.1139/w2012-074

  29. 29.

    Abe H, Ishii N, Sato S, Tsuge T (2012) Thermal properties and crystallization behaviors of medium-chain-length poly(3-hydroxyalkanoate)s. Polymer 53:3026–3034. https://doi.org/10.1016/j.polymer.2012.04.043

  30. 30.

    Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1992) Crystallization behavior and its influence on the mechanical properties of a thermoplastic elastomer produced by Pseudomonas oleovorans. Macromolecules 25:3723–3728. https://doi.org/10.1021/ma00040a018

  31. 31.

    Gopi S, Kontopoulou M, Ramsay BA, Ramsay JA (2018) Manipulating the structure of medium-chain-length polyhydroxyalkanoate (MCL-PHA) to enhance thermal properties and crystallization kinetics. Int J Biol Macromol 119:1248–1255. https://doi.org/10.1016/j.ijbiomac.2018.08.016

  32. 32.

    Gao J, Vo MT, Ramsay JA, Ramsay BA (2018) Overproduction of MCL-PHA with high 3-hydroxydecanoate Content. Biotechnol Bioeng 115:390–400. https://doi.org/10.1002/bit.26474

  33. 33.

    Jiang X, Sun Z, Marchessault RH et al (2012) Biosynthesis and properties of medium-chain-length polyhydroxyalkanoates with enriched content of the dominant monomer. Biomacromol 13:2926–2932. https://doi.org/10.1021/bm3009507

  34. 34.

    Liu Q, Luo G, Zhou XR, Chen GQ (2011) Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by b-oxidation pathway inhibited Pseudomonas putida. Metab Eng 13:11–17. https://doi.org/10.1016/j.ymben.2010.10.004

  35. 35.

    Sato S, Ishii N, Hamada Y et al (2012) Utilization of 2-alkenoic acids for biosynthesis of medium-chain-length polyhydroxyalkanoates in metabolically engineered Escherichia coli to construct a novel chemical recycling system. Polym Degrad Stab 97:329–336. https://doi.org/10.1016/j.polymdegradstab.2011.12.007

  36. 36.

    Gao J, Ramsay JA, Ramsay BA (2016) Fed-batch production of poly-3-hydroxydecanoate from decanoic acid. J Biotechnol 218:102–107

  37. 37.

    Sun Z, Ramsay JA, Guay M, Ramsay B (2007) Increasing the yield of MCL-PHA from nonanoic acid by co-feeding glucose during the PHA accumulation stage in two-stage fed-batch fermentations of Pseudomonas putida KT2440. J Biotechnol 132:280–282. https://doi.org/10.1016/j.jbiotec.2007.02.023

  38. 38.

    Fontaine P, Mosrati R, Corroler D (2017) Medium chain length polyhydroxyalkanoates biosynthesis in Pseudomonas putida mt-2 is enhanced by co-metabolism of glycerol/octanoate or fatty acids mixtures. Int J Biol Macromol 98:430–435. https://doi.org/10.1016/j.ijbiomac.2017.01.115

  39. 39.

    Sun Z, Ramsay J, Guay M, Ramsay B (2009) Enhanced yield of medium-chain-length polyhydroxyalkanoates from nonanoic acid by co-feeding glucose in carbon-limited, fed-batch culture. J Biotechnol 143:262–267. https://doi.org/10.1016/j.jbiotec.2009.07.014

  40. 40.

    Ouyang SP, Luo RC, Chen SS et al (2007) Production of polyhydroxyalkanoates with high 3-hydroxydodecanoate monomer content by fadB anf fadA knockout mutant of Pseudomonas putida KT2442. Biomacromol 8:2504–2511. https://doi.org/10.1021/bm0702307

  41. 41.

    Wang HH, Zhou XR, Liu Q, Chen GQ (2011) Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Appl Microbiol Biotechnol 89:1497–1507. https://doi.org/10.1007/s00253-010-2964-x

  42. 42.

    Jiang XJ, Sun Z, Ramsay JA, Ramsay BA (2013) Fed-batch production of MCL-PHA with elevated 3-hydroxynonanoate content. AMB Express 3:50. https://doi.org/10.1186/2191-0855-3-50

  43. 43.

    Sun Z, Ramsay JA, Guay M, Ramsay BA (2006) Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Appl Microbiol Biotechnol 71:423–431. https://doi.org/10.1007/s00253-005-0191-7

  44. 44.

    WEF (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC

  45. 45.

    Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974. https://doi.org/10.1021/ac60252a045

  46. 46.

    Lever M (1972) A new reaction for colorimetric determination of carbohydrates. Anal Biochem 47:273–279. https://doi.org/10.1016/0003-2697(72)90301-6

  47. 47.

    Ramsay BA, Saracovan I, Ramsay JA, Marchessault RH (1991) Continuous production of long-side-chain poly-3-hydroxyalkanoates by Pseudomonas oleovorans. Appl Environ Microbiol 57:625–629

  48. 48.

    Braunegg G, Sonnleitner B, Lafferty RM (1978) A rapid gas chromatographic method for the determination of poly-b-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 6:29–37. https://doi.org/10.1007/BF00500854

  49. 49.

    Escapa IF, del Cerro C, García JL, Prieto MA (2013) The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol. Environ Microbiol 15:93–110. https://doi.org/10.1111/j.1462-2920.2012.02790.x

  50. 50.

    Kim SR, Ha SJ, Wei N et al (2012) Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol 30:274–282. https://doi.org/10.1016/j.tibtech.2012.01.005

  51. 51.

    Christian A, David H, BK A, Ulrika R (2007) Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli. Biotechnol Prog 23:381–388. https://doi.org/10.1021/bp060301y

  52. 52.

    Rojo F (2010) Carbon catabolite repression in Pseudomonas: Optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 34:658–684. https://doi.org/10.1111/j.1574-6976.2010.00218.x

  53. 53.

    Cerrone F, Duane G, Casey E et al (2014) Fed-batch strategies using butyrate for high cell density cultivation of Pseudomonas putida and its use as a biocatalyst. Appl Microbiol Biotechnol 98:9217–9228. https://doi.org/10.1007/s00253-014-5989-8

  54. 54.

    Poblete-Castro I, Escapa IF, Jäger C et al (2012) The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: highlights from a multi-level omics approach. Microb Cell Fact 11:34. https://doi.org/10.1186/1475-2859-11-34

  55. 55.

    Ma L, Zhang H, Liu Q et al (2009) Production of two monomer structures containing medium-chain-length polyhydroxyalkanoates by β-oxidation-impaired mutant of Pseudomonas putida KT2442. Bioresour Technol 100:4891–4894. https://doi.org/10.1016/j.biortech.2009.05.017

  56. 56.

    Wang Y, Chung A, Chen GQ (2017) Synthesis of medium-chain-length polyhydroxyalkanoate homopolymers, random copolymers, and block copolymers by an engineered strain of Pseudomonas entomophila. Adv Healthc Mater 6:1–10. https://doi.org/10.1002/adhm.201601017

  57. 57.

    Sun Z, Ramsay JA, Guay M, Ramsay BA (2007) Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl Microbiol Biotechnol 74:69–77. https://doi.org/10.1007/s00253-006-0655-4

  58. 58.

    Davis R, Duane G, Kenny ST et al (2015) High cell density cultivation of Pseudomonas putida KT2440 using glucose without the need for oxygen enriched air supply. Biotechnol Bioeng 112:725–733. https://doi.org/10.1002/bit.25474

  59. 59.

    Maclean H, Sun Z, Ramsay J, Ramsay B (2008) Decaying exponential feeding of nonanoic acid for the production of medium-chain-length poly (3-hydroxyalkanoates) by Pseudomonas putida. Can J Chem 86:564–569. https://doi.org/10.1139/V08-062

  60. 60.

    Huijberts GNM, Eggink G (1996) Production of poly(3-hydroxyalkanoates) by Pseudomonas putida KT2442 in continuous cultures. Appl Microbiol Biotechnol 46:233–239. https://doi.org/10.1007/s002530050810

  61. 61.

    Preusting H, Kingma J, Witholt B (1991) Physiology and polyester formation of Pseudomonas oleovorans in continuous two-liquid-phase cultures. Enzyme Microb Technol 13:770–780. https://doi.org/10.1016/0141-0229(91)90059-J

  62. 62.

    Davis R, Chandrashekar A, Shamala TR (2008) Role of (R)-specific enoyl coenzyme A hydratases of Pseudomonas sp. in the production of polyhydroxyalkanoates. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 93:285–296. https://doi.org/10.1007/s10482-007-9203-1

  63. 63.

    Vo MT, Lee K-W, Jung Y-M, Lee Y-H (2008) Comparative effect of overexpressed phaJ and fabG genes supplementing (R)-3-hydroxyalkanoate monomer units on biosynthesis of mcl-polyhydroxyalkanoate in Pseudomonas putida KCTC1639. J Biosci Bioeng 106:95–98. https://doi.org/10.1263/jbb.106.95

  64. 64.

    Hoffmann N, Rehm BHA (2004) Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. FEMS Microbiol Lett 237:1–7. https://doi.org/10.1016/j.femsle.2004.06.029

  65. 65.

    Beckers V, Poblete-Castro I, Tomasch J, Wittmann C (2016) Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Microb Cell Fact 15:73. https://doi.org/10.1186/s12934-016-0470-2

  66. 66.

    Mozejko–ciesielska J, Dabrowska D, Szalewska–palasz A, Ciesielski S (2017) Medium–chain–length polyhydroxyalkanoates synthesis by Pseudomonas putida KT2440 relA/ spoT mutant: bioprocess characterization and transcriptome analysis. AMB Express 7:92. https://doi.org/10.1186/s13568-017-0396-z

  67. 67.

    Wang Q, Tappel RC, Zhu C, Nomura CT (2012) Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks. Appl Environ Microbiol 78:519–527. https://doi.org/10.1128/AEM.07020-11

Download references

Acknowledgements

The authors gratefully acknowledge the support provided for this study by the São Paulo Research Foundation (FAPESP, Grants 2016/26034-7, 2016/01253-8).

Author information

Correspondence to Guilherme H. D. Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oliveira, G.H.D., Zaiat, M., Rodrigues, J.A.D. et al. Towards the Production of mcl-PHA with Enriched Dominant Monomer Content: Process Development for the Sugarcane Biorefinery Context. J Polym Environ 28, 844–853 (2020). https://doi.org/10.1007/s10924-019-01637-2

Download citation

Keywords

  • Sucrose
  • Fructose
  • Glucose
  • Decanoic acid
  • Carbon-limited