Garcinia gummigutta Vegetable Oil–Graphene Oxide Nano-composite: An Efficient and Eco-friendly Material for Corrosion Prevention of Mild Steel in Saline Medium

  • Mahesh Bhaskar Hegde
  • Saurav Ramesh Nayak
  • Kikkeri Narasimha Shetty MohanaEmail author
  • Ningappa Kumara Swamy
Original Paper


Garcinia gummigutta vegetable oil (GGVO) is a rich source of stearic and oleic acid which on heat treatment at around 300 °C, will get polymerized with highly conjugated network system. The present work intended to exploit the properties of GGVO for the production of eco-friendly anti-corrosion coating material. The oil extracted from GG seeds was used to prepare graphene oxide (GO) dispersion in oil and successfully employed as an efficient anti-corrosion coating material on mild steel (MS). All coatings are done by simple heat treatment of dip-coated MS specimen. The corrosion prevention ability of the coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques in 3.5% NaCl solution. Electrochemical results showed that the addition of GO significantly enhances the corrosion inhibition performance of the GGVO coating. The inhibition efficiency of the GGVO coating increased from 93.0 to 99.8% on the incorporation of 0.3 wt% of GO into the oil. The enhancement of the corrosion prevention ability of the GO ink is discussed based on the impermeable action of GO to the corrosive ions and also suppression of the number of pores in the polymer that is formed during the curing of the coating.

Graphic Abstract


Garcinia gummigutta Graphene oxide Mild steel Anti-corrosion coating Electrochemical methods 



The corresponding author and co-authors acknowledges Institution of Excellence and Center for Material Science and Technology, University of Mysore, Mysuru, India, for the instrumentation facilities.

Compliance with Ethical Standards

Conflicts of interest

The corresponding author and co-authors declared that they have no conflicts of interest.


  1. 1.
    Armelin E, Pla R, Liesa F (2008) Corros Sci 50:721–728CrossRefGoogle Scholar
  2. 2.
    Husain E, Narayanan TN, Taha-Tijerina JJ (2013) ACS Appl Mater Interfaces 5:4129–4135PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Chen L, Zhou S, Song S, Zhang B, Gu G (2011) J Coat Technol Res 8:481–487CrossRefGoogle Scholar
  4. 4.
    Liu Y, Sun D, You H, Chung JS (2005) Appl Surf Sci 246:82–89CrossRefGoogle Scholar
  5. 5.
    Yu D, Tian J, Dai J, Wang X (2013) Electrochim Acta 97:409–419CrossRefGoogle Scholar
  6. 6.
    Gao W, Li Z (2004) Mater Res 7:175–182CrossRefGoogle Scholar
  7. 7.
    Kirkland NT, Schiller T, Medhekar N, Birbilis N (2012) Corros Sci 56:1–4CrossRefGoogle Scholar
  8. 8.
    Chen S, Brown L, Levendorf M (2011) ACS Nano 5:1321–1327PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Chang KC, Hsu MH, Lu HI (2014) Carbon N Y 66:144–153CrossRefGoogle Scholar
  10. 10.
    Mondal J, Marques A, Aarik L, Kozlova J, Simoes A, Sammelselg V (2016) Corros Sci 105:161–169CrossRefGoogle Scholar
  11. 11.
    Yoo BM, Shin HJ, Yoon HW, Park HB (2014) J Appl Polym Sci 131:1–23CrossRefGoogle Scholar
  12. 12.
    Su Y, Kravets VG, Wong SL (2014) Nat Commun 5:1–5Google Scholar
  13. 13.
    Chaudhry AU, Mittal V, Mishra B (2015) Mater Chem Phys 163:130–137CrossRefGoogle Scholar
  14. 14.
    Xie W, Huang M (2018) Energy Convers Manag 159:42–53CrossRefGoogle Scholar
  15. 15.
    Comlekci GK, Ulutan S (2019) Prog Org Coat 129:292–299CrossRefGoogle Scholar
  16. 16.
    Miao S, Wang P, Su Z, Zhang S (2014) Acta Biomater 10:1692–1704PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Alam M, Alandis NM (2011) J Polym Environ 19(2):391–397CrossRefGoogle Scholar
  18. 18.
    Balakrishnan T, Sathiyanarayanan S, Mayavan S (2015) ACS Appl Mater Interfaces 7:19781–19788PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Singhbabu YN, Sivakumar B, Singh JK (2015) Nanoscale 7:8035–8047PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Choppa T, Selvaraj CI, Zachariah A (2015) J Food Sci Technol 52(9):5906–5913PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Parthasarathy U, Nandakishore OP, Senthil Kumar R, Parthasarathy VA (2014) J Glob Biosci 3(6):872–880Google Scholar
  22. 22.
    Narasimharao K, Venkata Ramana G, Sreedhar D, Vasudevarao V (2016) J Mater Sci Eng 5:284. CrossRefGoogle Scholar
  23. 23.
    Sims RPA (1957) J Am Oil Chem Soc 34(9):466–469CrossRefGoogle Scholar
  24. 24.
    Wang C, Erhan S (1999) J Am Oil Chem Soc 76:1211–1216CrossRefGoogle Scholar
  25. 25.
    Guner FS (1997) J Am Oil Chem Soc 74:1525–1529CrossRefGoogle Scholar
  26. 26.
    Brioude MM, Guimaraes DH, Fiuza RP, Prado LASA, Boaventura JS, Jose NM (2007) Mater Res 10(4):335–339CrossRefGoogle Scholar
  27. 27.
    Pakhomov P, Khizhnyak S, Tshmel A (2010) Laser Phys 20:936–947CrossRefGoogle Scholar
  28. 28.
    Pakhomov P, Khizhnyak S, Galitsyn V, Rogova E, Hartmann B, Tshmel A (2011) Macromol Symp 305(1):63–72CrossRefGoogle Scholar
  29. 29.
    Emran MY, Shenashen MA, Morita H, El-Safty SA (2018) Adv Healthc Mater 7(16):1701459CrossRefGoogle Scholar
  30. 30.
    Emran MY, Shenashen MA, Abdelwahab AA, Khalifa H, Mekawy M, Akhtar N, Abdelmottaleb M, El-Safty SA (2018) J Appl Electrochem 48(5):529–542CrossRefGoogle Scholar
  31. 31.
    Shi X, Nguyen TA, Suo Z (2009) Surf Coat Technol 204:237–245CrossRefGoogle Scholar
  32. 32.
    Liang G, Schmauder S, Lyu M, Schneider Y, Zhang C, Han Y (2018) Materials (Basel) 11(2):237CrossRefGoogle Scholar
  33. 33.
    Siu JHW, Li LKY (2000) Wear 237:283–287CrossRefGoogle Scholar
  34. 34.
    Li J, Ecco L, Delmas G, Whitehouse N, Collins P, Deflorian F, Pan J (2014) J Electrochem Soc 162:55–63CrossRefGoogle Scholar
  35. 35.
    Almansour A, Azizi M, Jesri AM, Entakly S (2015) Int J Acad Sci Res 3:37–45Google Scholar
  36. 36.
    Li W, Li DY (2006) Acta Mater 54:445–452CrossRefGoogle Scholar
  37. 37.
    Han D, Yan L, Chen W, Li W (2011) Carbohydr Polym 83:653–658CrossRefGoogle Scholar
  38. 38.
    Sangaj NS, Malshe VC (2004) Prog Org Coat 50:28–39CrossRefGoogle Scholar
  39. 39.
    Yuan S, Pehkonen SO, Liang B, Ting YP, Neoh KG, Kang ET (2011) Corros Sci 53:2738–2747CrossRefGoogle Scholar
  40. 40.
    Lorenz WJ (1981) Corros Sci 21:647–672CrossRefGoogle Scholar
  41. 41.
    Palimi MJ, Rostami M, Mahdavian M, Ramezanzadeh B (2015) J Coat Technol Res 12:277–292CrossRefGoogle Scholar
  42. 42.
    Ramezanzadeh B, Niroumandrad S, Ahmadi A, Mahdavian M, Moghadam MM (2016) Corros Sci 103:283–304CrossRefGoogle Scholar
  43. 43.
    Mansfeld F (1990) Electrochim Acta 35(10):1533–1544CrossRefGoogle Scholar
  44. 44.
    Alsamuraee A, Jaafer H (2011) Am J Sci Ind Res 2:761–768Google Scholar
  45. 45.
    Mayavan S, Siva T, Sathiyanarayanan S (2013) RSC Adv 3:24868–24871CrossRefGoogle Scholar
  46. 46.
    Yu YH, Lin YY, Lin CH, Chan CC, Huang YC (2014) Polym Chem 5:535–550CrossRefGoogle Scholar
  47. 47.
    Gomez-Aguilar JF, Escalante-Martinez JE, Calderon-Ramon C, Morales-Mendoza LJ, Benavidez-Cruz M, Gonzalez-Lee M (2016) Adv Math Phys 2016, Article ID 9720181Google Scholar
  48. 48.
    Dhoke SK, Rajgopalan N, Khanna AS (2012) Int J Mater Sci 2:47–55Google Scholar
  49. 49.
    Nayak SR, Mohana KNS (2018) Surf Interfaces 11:63–73CrossRefGoogle Scholar
  50. 50.
    Yu D, Tian J, Dai J, Wang X (2014) Corrosion 70:329–336CrossRefGoogle Scholar
  51. 51.
    Chaitra TK, Mohana KNS, Tandon HC (2015) J Mol Liq 211:1026–1038CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Studies in ChemistryUniversity of MysoreMysoreIndia
  2. 2.Department of ChemistrySri Jayachamarajendra College of EngineeringMysoreIndia

Personalised recommendations