Advertisement

Characterization of Exopolysaccharide Produced by Pseudomonas sp. PFAB4 for Synthesis of EPS-Coated AgNPs with Antimicrobial Properties

  • Aparna Banerjee
  • Debasis Das
  • Shalini Gaur Rudra
  • Koushik Mazumder
  • Rodrigo Andler
  • Rajib BandopadhyayEmail author
Original paper

Abstract

Thermal ecosystems like hot springs are exclusive habitat of thermotolerant microorganisms that produce exopolysaccharides (EPS). In this study, EPS produced by a hot spring origin Pseudomonas species is structurally elucidated.The EPS is highly thermostable (Td 289.98 °C), has low molecular weight (1510 Da) and is rhamnoglucose type consisting α-(1 → 3) linked to L-Rhap and α-(1 → 6) linked to d-Glc substituted with O-acetyl groups. Irregular EPS sheets with smooth surface were observed that signify the compact structure of the biopolymer; a characteristic plasticized film-like feature. Intra- and inter-molecular aggregation of EPS units are observed in atomic force microscopy. The EPS showed good rheological property at neutral pH. EPS-mediated green synthesis of silver nanoparticles (AgNP) was performed using co-precipitation method. Size of individual AgNPs had a Z-average of 93.6 nm and 0.437 polydispersity index. The EPS-coated AgNPs were moderately monodisperse. These AgNPs also exhibited biocidal property preferentially against gram negative bacteria and some fungi. Incorporating EPS to the metal nanoparticles confers them biocompatibility. Green synthesis of silver nanoparticles has gained considerable attention for its eco-friendliness in nano-medicine and nano-biotechnology. Keeping in context, the results of our study will support a new polysaccharide-mediated green synthesis approach of metal nanoparticles that shows profound antimicrobial property.

Keywords

Pseudomonas Exopolysaccharide Silver nanoparticle Green synthesis Biocidal property 

Notes

Acknowledgements

The authors would like to thank the UGC-Center of Advanced Study, Department of Botany, The University of Burdwan for pursuing the research activities. AB is thankful for the financial assistance from the SRF (State Funded) [Fc (Sc.) /RS/SF/BOT./2014–15/ 103 (3)]. All the authors would also like to thank Dr. Raja Shunmugam, IISER Kolkata for helping in the advanced polymer chromatographic facility.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10924_2019_1602_MOESM1_ESM.docx (89 kb)
Supplementary file1 (DOCX 88 kb)
10924_2019_1602_MOESM2_ESM.docx (35 kb)
Supplementary file2 (DOCX 34 kb)
10924_2019_1602_MOESM3_ESM.docx (14 kb)
Supplementary file3 (DOCX 13 kb)
10924_2019_1602_MOESM4_ESM.docx (12 kb)
Supplementary file4 (DOCX 12 kb)

References

  1. 1.
    Sutherland IW (1997) Microbial exopolysaccharides-structural subtleties and their consequences. Pure Appl Chem 69(9):1911–1917CrossRefGoogle Scholar
  2. 2.
    Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13(11):14002–14015PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Nichols CM, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol 7(4):253–271PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Freitas F, Alves VD, Reis MAM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29(8):388–398PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Sathiyanarayanan G, Dineshkumar K, Yang YH (2017) Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles. Crit Rev Microbiol. 43(6):731–752PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Escárcega-González CE, Garza-Cervantes JA, Vázquez-Rodríguez A, Morones-Ramírez JR (2018) Bacterial exopolysaccharides as reducing and/or stabilizing agents during synthesis of metal nanoparticles with biomedical applications. Int J Polym Sci.  https://doi.org/10.1155/2018/7045852 CrossRefGoogle Scholar
  7. 7.
    Banerjee A, Halder U, Bandopadhyay R (2017) Preparations and applications of polysaccharide based green synthesized metal nanoparticles: a state-of-the-art. J Clust Sci 28(4):1803–1813CrossRefGoogle Scholar
  8. 8.
    Decho AW, Gutierrez T (2017) Microbial extracellular polymeric substances (EPSs) in ocean systems. Front Microbiol 8:922PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Selvakumar R, Aravindh S, Ashok AM, Balachandran YL (2014) A facile synthesis of silver nanoparticle with SERS and antimicrobial activity using Bacillus subtilis exopolysaccharides. J Exp Nanosci 9(10):1075–1087CrossRefGoogle Scholar
  10. 10.
    Rasulov B, Rustamova N, Yili A, Zhao HQ, Aisa HA (2016) Synthesis of silver nanoparticles on the basis of low and high molar mass exopolysaccharides of Bradyrhizobium japonicum 36 and its antimicrobial activity against some pathogens. Folia Microbiol 61(4):283–293CrossRefGoogle Scholar
  11. 11.
    Sathiyanarayanan G, Vignesh V, Saibaba G, Vinothkanna A, Dineshkumar K, Viswanathan MB, Selvin J (2014) Synthesis of carbohydrate polymer encrusted gold nanoparticles using bacterial exopolysaccharide: a novel and greener approach. RSC Adv 4(43):22817–22827CrossRefGoogle Scholar
  12. 12.
    Vignesh V, Sathiyanarayanan G, Sathishkumar G, Parthiban K, Sathish KK, Thirumurugan R (2015) Formulation of iron oxide nanoparticles using exopolysaccharide: evaluation of their antibacterial and anticancer activities. RSC Adv 5(35):27794–27804CrossRefGoogle Scholar
  13. 13.
    Vidya SM, Mutalik S, Bhat KU, Huilgol P, Avadhani K (2016) Preparation of gold nanoparticles by novel bacterial exopolysaccharide for antibiotic delivery. Life Sci 153:171–179PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Saravanan C, Rajesh R, Kaviarasan T, Muthukumar K, Kavitake D, Shetty PH (2017) Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol Rep 15:33–40CrossRefGoogle Scholar
  15. 15.
    Abinaya M, Vaseeharan B, Divya M, Sharmili A, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2018) Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J Trace Elem Med Biol 45:93–103PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kumari B, Lohar S, Ghosh M, Ta S, Sengupta A, Banerjee PP, Chattopadhyay A, Das D (2016) Structurally characterized Zn2+ selective Ratiometric fluorescence probe in 100% water for HeLa cell imaging: experimental and computational studies. J Fluoresc 26(1):87–103PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Pelczar MJ, Bard RC, Burnett GW (1957) Manual of microbiological methods. McGraw-Hill Book Company, New YorkGoogle Scholar
  18. 18.
    Dey U, Chatterjee S, Mondal NK (2016) Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol Rep 10:1–7CrossRefGoogle Scholar
  19. 19.
    Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526PubMedPubMedCentralGoogle Scholar
  20. 20.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Fox A, Morgan SL, Gilbart J (1989) Preparation of alditol acetates and their analysis by gas chromatography (GC) and mass spectrometry (MS). In: Biermann CJ, McGinnis GD (eds) Analysis of carbohydrates by GLC and MS. CRC Press, Boca Raton, pp 87–117Google Scholar
  22. 22.
    Venkatesh P, Balraj M, Ayyanna R, Ankaiah D, Arul V (2016) Physicochemical and biosorption properties of novel exopolysaccharide produced by Enterococcus faecalis. LWT-Food Sci Technol 68:606–614CrossRefGoogle Scholar
  23. 23.
    Vijayakumar S, Vaseeharan B, Malaikozhundan B, Shobiya M (2016) Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: characterization and biomedical applications. Biomed Pharmacother 84:1213–1222PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Raliya R, Tarafdar JC, Mahawar H, Kumar R, Gupta P, Mathur T et al (2014) ZnO nanoparticles induced exopolysaccharide production by B. subtilis strain JCT1 for arid soil applications. Int J Biol Macromol 65:362–368PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Adhikari S, Lohar S, Kumari B, Banerjee A, Bandopadhyay R, Matalobos JS, Das D (2016) Cu(II) complex of a new isoindole derivative: structure, catecholase like activity, antimicrobial properties and bio-molecular interactions. New J Chem 40:10094–10099CrossRefGoogle Scholar
  26. 26.
    Kambourova M, Mandeva R, Dimova D, Poli A, Nicolaus B, Tommonaro G (2009) Production and characterization of a microbial glucan, synthesized by Geobacillus tepidamans V264 isolated from Bulgarian hot spring. Carbohydr Polym 77(2):338–343CrossRefGoogle Scholar
  27. 27.
    Arena A, Maugeri TL, Pavone B, Iannello D, Gugliandolo C, Bisignano G (2006) Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. Int J Immunopharmacol 6(1):8–13CrossRefGoogle Scholar
  28. 28.
    Wang Y, Li C, Liu P, Ahmed Z, Xiao P, Bai X (2010) Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohydr Polym 82(3):895–903CrossRefGoogle Scholar
  29. 29.
    Feng F, Zhou Q, Yang Y, Zhao F, Du R, Han Y, Xiao H, Zhou Z (2018) Characterization of highly branched dextran produced by Leuconostoc citreum B-2 from pineapple fermented product. Int J Biol Macromol 113:45–50PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ahmed Z, Wang Y, Anjum N, Ahmad A, Khan ST (2013) Characterization of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir–Part II. Food Hydrocoll 30(1):343–350CrossRefGoogle Scholar
  31. 31.
    Sajna KV, Sukumaran RK, Gottumukkala LD, Jayamurthy H, Dhar KS, Pandey A (2013) Studies on structural and physical characteristics of a novel exopolysaccharide from Pseudozyma sp. NII 08165. Int J Biol Macromol 59:84–89PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Banerjee A, Rudra SG, Mazumder K, Nigam V, Bandopadhyay R (2018) Structural and functional properties of exopolysaccharide excreted by a novel Bacillus anthracis (Strain PFAB2) of hot spring origin. Indian J Microbiol 58(1):39–50PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Thambiraj SR, Phillips M, Koyyalamudi SR, Reddy N (2013) Antioxidant activities and characterisation of polysaccharides isolated from the seeds of Lupinus angustifolius. Ind Crops Prod 74:950–956CrossRefGoogle Scholar
  34. 34.
    Wang X, Zhang M, Zhang D, Wang S, Yan C (2017) An O-acetyl-glucomannan from the rhizomes of Curculigo orchioides: structural characterization and anti-osteoporosis activity in vitro. Carbohydr Polym 174:48–56PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Parente JP, Adao CR, da Silva BP, Tinoco LW (2014) Structural characterization of an acetylated glucomannan with antiinflammatory activity and gastroprotective property from Cyrtopodium andersonii. Carbohydr Res 391:16–21PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Sardari RR, Kulcinskaja E, Ron EY, Björnsdóttir S, Friðjónsson ÓH, Hreggviðsson GÓ, Karlsson EN (2017) Evaluation of the production of exopolysaccharides by two strains of the thermophilic bacterium Rhodothermus marinus. Carbohydr Polym 156:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Young R, Adams GA (1965) Structural features of two extracellular polysaccharides from Serratia marcescens. Can J Chem 43(11):2929–2939CrossRefGoogle Scholar
  38. 38.
    Dertli E, Colquhoun IJ, Gunning AP, Bongaerts RJ, Le Gall G, Bonev BB, Mayer MJ, Narbad A (2013) Structure and biosynthesis of two exopolysaccharides produced by Lactobacillus johnsonii FI9785. J Biol Chem 288(44):31938–31951PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kumar CG, Joo HS, Choi JW, Koo YM, Chang CS (2004) Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme Microb Technol 34(7):673–681CrossRefGoogle Scholar
  40. 40.
    Li HP, Hou WG, Zhang YZ (2011) Rheological properties of aqueous solution of new exopolysaccharide secreted by a deep-sea mesophilic bacterium. Carbohydr Polym 84(3):1117–1125CrossRefGoogle Scholar
  41. 41.
    Al-Asheh S, Abu-Jdayil B, Abunasser N, Barakat A (2002) Rheological characteristics of microbial suspensions of Pseudomonas aeruginosa and Bacillus cereus. Int J Biol Macromol 30(2):67–74PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Pal P, Banerjee A, Halder U, Pandey JP, Sen G, Bandopadhyay R (2018) Conferring antibacterial properties on sesbania gum via microwave-assisted graft copolymerization of DADMAC. J Polym Environ 26(8):3272–3282CrossRefGoogle Scholar
  43. 43.
    Pal P, Banerjee A, Soren K, Chakraborty P, Pandey JP, Sen G, Bandopadhyay R (2019) Novel biocide based on cationic derivative of Psyllium: surface modification and antibacterial activity. J Polym Environ 27(6):1178–1190CrossRefGoogle Scholar
  44. 44.
    Mallmann EJJ, Cunha FA, Castro BN, Maciel AM, Menezes EA, Fechine PBA (2015) Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop Sao Paulo 57(2):165–167PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H (2012) Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnol 10(1):19CrossRefGoogle Scholar
  46. 46.
    Mandal D, Dash SK, Das B, Chattopadhyay S, Ghosh T, Das D, Roy S (2016) Bio-fabricated silver nanoparticles preferentially targets Gram positive depending on cell surface charge. Biomed Pharmacother 83:548–558PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Malaikozhundan B, Vaseeharan B, Vijayakumar S, Sudhakaran R, Gobi N, Shanthini G (2016) Antibacterial and antibiofilm assessment of Momordica charantia fruit extract coated silver nanoparticle. Biocatal Agric Biotechnol 8:189–196CrossRefGoogle Scholar
  48. 48.
    Brett DW (2006) A discussion of silver as an antimicrobial agent: alleviating the confusion. Ostomy Wound Manage 52(1):34–41PubMedPubMedCentralGoogle Scholar
  49. 49.
    Salomoni R, Léo P, Montemor AF, Rinaldi BG, Rodrigues MFA (2017) Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl 10:115–121PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB (2010) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4(3):319–330PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Hsiao IL, Hsieh YK, Wang CF, Chen IC, Huang YJ (2015) Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra-and extracellular silver speciation analysis. Environ Sci Technol 49(6):3813–3821PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12(3):789–799PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Ishwarya R, Vaseeharan B, Shanthi S, Ramesh S, Manogari P, Dhanalakshmi K, Vijayakumar S, Benelli G (2017) Green synthesized silver nanoparticles: toxicity against Poecilia reticulata fishes and Ceriodaphnia cornuta crustaceans. J Clust Sci 28(1):519–527CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UGC-Center of Advanced Study, Department of BotanyThe University of BurdwanBurdwanIndia
  2. 2.Centro de investigación en Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación Y PosgradoUniversidad Católica del MauleTalcaChile
  3. 3.Department of ChemistryThe University of BurdwanBurdwanIndia
  4. 4.Division of Food Science and Postharvest TechnologyICAR-Indian Agricultural Research Institute, PusaNew DelhiIndia
  5. 5.Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI)Department of Biotechnology, Ministry of Science and Technology, Govt of IndiaMohaliIndia
  6. 6.Facultad de Ciencias Agrarias Y ForestalesUniversidad Católica del MauleTalcaChile

Personalised recommendations