Advertisement

The Effect of Hydroxyapatite Prepared by In Situ Synthesis on the Properties of Poly(Vinyl Alcohol)/Cellulose Nanocrystals Biomaterial

  • 39 Accesses

Abstract

Polyvinyl alcohol/cellulose nanocrystals (CNC) and hydroxyapatite (HA) (PCH) were combined using an in situ method to fabricate porous scaffolds. CNC was extracted from sugarcane bagasse and the effect of HA on PVA/CNC composites was varied with 0, 0.5, 1 and 3 wt%. The scanning electron microscopy images of the PCH composites showed interior pores with pore channels, while the energy dispersive spectroscopy (EDS) results confirmed the increased HA content in the nanocomposite with a Ca/P ratio of 1.67. Porosity and the equilibrium swelling ratio were slightly affected by the HA content. The Fourier transform infrared spectra supported the EDS results by identifying significant peaks belonging to the HA curves of the PCH composites. The crystallinity revealed decreased crystal regions at higher HA content, whereas the mechanical behavior showed the improvement at 0.5 wt% of HA. Cytotoxicity with L929 demonstrated the compatibility of the PCH composites, with 85 ± 0.92% cell viability.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Wolfe SP, Sell AS, Bowlin LG (2011) Natural and synthetic scaffolds. In Pallua N, Suscheck CV (eds) Tissue engineering. Springer, Berlin, pp 41–67

  2. 2.

    Turco G, Marsich E, Bellomo F, Semeraro S, Donati I, Brun F, Grandolfo M, Accardo A, Paoletti S (2009) Biomacromolecules 10:1575–1583

  3. 3.

    Deville S (2010) Materials 3:1913–1927

  4. 4.

    O'Brien FJ (2011) Mater Today 14:88–95

  5. 5.

    Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biomaterials 27:3413–3431

  6. 6.

    Li R, Chen K, Li G, Han G, Yu S, Yao J, Cai Y (2016) J Mol Struct 1120:34–41

  7. 7.

    Ahn S-J, Shin YM, Kim SE, Jeong SI, Jeong J-O, Park J-S, Gwon H-J, Seo DE, Nho Y-C, Kang SS, Kim C-Y, Huh J-B, Lim Y-M (2015) Biotechnol Bioprocess Eng 20:948–955

  8. 8.

    Zhang C, Salick MR, Cordie TM, Ellingham T, Dan Y, Turng LS (2015) Mater Sci Eng C 49:463–471

  9. 9.

    Kokubo T, Takadama H (2006) Biomaterials 27:2907–2915

  10. 10.

    Bhattacharya D, Germinario LT, Winter WT (2008) Carbohydr Polym 73:371–377

  11. 11.

    Mandal A, Chakrabarty D (2011) Carbohydr Polym 86:1291–1299

  12. 12.

    Teixeira EDM, Bondancia TJ, Teodoro KBR, Corrêa AC, Marconcini JM, Mattoso LHC (2011) Ind Crops Prod 33:63–66

  13. 13.

    Lu Z, Fan L, Zheng H, Lu Q, Liao Y, Huang B (2013) Bioresour Technol 146:82–88

  14. 14.

    Chivrac F, Pollet E, Avérous L (2009) Mater Sci Eng R 67:1–17

  15. 15.

    Lin N, Dufresne A (2014) Eur Polym J 59:302–325

  16. 16.

    Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN (2010) Dent Mater 26:471–482

  17. 17.

    Kalpana SK, Dinesh RK, Rajalaxmi D (2008) Biomed Mater 3:034122

  18. 18.

    Kawai N, Niwa S, Sato M, Sato Y, Suwa Y, Ichihara I (1997) J Biomed Mater Res 37:1–8

  19. 19.

    Zhao J, Guo LY, Yang XB, Weng J (2008) Appl Surf Sci 255:2942–2946

  20. 20.

    Yusong P, Dangsheng X, Xiaolin C (2007) J Mater Sci 42:5129–5134

  21. 21.

    Sun T, Khan TH, Sultana N (2014) J Nanomater 2014:1–8

  22. 22.

    Niamsap T, Lam NT, Sukyai P (2019) Carbohydr Polym 205:159–166

  23. 23.

    Deng X, Hao J, Wang C (2001) Biomaterials 22:2867–2873

  24. 24.

    Ishikawa M, Oaki Y, Tanaka Y, Kakisawa H, Salazar-Alvarez G, Imai H (2015) J Mater Chem B 3:5858–5863

  25. 25.

    Mandal A, Chakrabarty D (2014) J Ind Eng Chem 20:462–473

  26. 26.

    Hassan CM, Peppas NA (2000) Macromolecules 33:2472–2479

  27. 27.

    Kanimozhi K, KhaleelBasha S, SuganthaKumari V (2016) Mater Sci Eng C 61:484–491

  28. 28.

    Lam NT, Chollakup R, Smitthipong W, Nimchua T, Sukyai P (2017) Ind Crops Prod 100:183–197

  29. 29.

    Lam NT, Chollakup R, Smitthipong W, Nimchua T, Sukyai P (2017) Sugar Technol 13:1–14

  30. 30.

    Zhou YM (2012) Express Polym Lett 6:794–804

  31. 31.

    Gonzalez JS, Luduena LN, Ponce A, Alvarez VA (2014) Mater Sci Eng C 34:54–61

  32. 32.

    Hassan CM, Peppas NA (2000) Adv Polym Sci 33:37–65

  33. 33.

    Nie L, Chen D, Suo J, Zou P, Feng S, Yang Q, Yang S, Ye S (2012) Colloids Surf B 100:169–176

  34. 34.

    Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Cellulose 21:3409–3426

  35. 35.

    Ciolacu D, Kovac J, Kokol V (2010) Carbohydr Res 345:621–630

  36. 36.

    Aramwit P, Siritientong KT, Srichana T (2010) Int J Biol Macromol 47:668–675

  37. 37.

    Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M (2015) Carbohyd Polym 132:146–155

  38. 38.

    Kuzmenko V, Kalogeropoulos T, Thunberg J, Johannesson S, Hägg D, Enoksson P, Gatenholm P (2016) Mater Sci Eng C 58:14–23

  39. 39.

    Ohya Y, Matsunami H, Ouchi T (2004) J Biomater Sci Polym Ed 15:111–123

  40. 40.

    Slavutsky AM, Bertuzzi MA (2014) Carbohydr Polym 110:53–61

  41. 41.

    Khalil HPSA, Ismail H, Rozman HD, Ahmad MN (2001) Eur Polym J 37:1037–1045

  42. 42.

    Li M, Wang LJ, Li D, Cheng YL, Adhikari B (2014) Carbohydr Polym 10:136–143

  43. 43.

    Wang W-M, Cai Z-S, Yu J-Y, Xia Z-P (2010) Fibers Polym 10:776–780

  44. 44.

    Garside P, Wyeth P (2003) Stud Conserv 48:269–275

  45. 45.

    Klemm D, Heublein B, Fink H-P, Bohn A (2005) Angew Chem Int Ed 44:3358–3393

  46. 46.

    AziziSamir MAS, Alloin F, Sanchez J-Y, Dufresne A (2004) Polymer 45:4149–4157

  47. 47.

    Alemdar A, Sain M (2008) Compos Sci Technol 68:557–565

  48. 48.

    Granja PL, Ribeiro CC, De Jéso B, Baquey C, Barbosa MA (2001) J Mater Sci 12:785–791

  49. 49.

    Wang P, Li C, Gong H, Jiang X, Wang H, Li K (2010) Powder Technol 203:315–321

  50. 50.

    Huang C, Hao N, Bhagia S, Li M, Meng X, Pu Y, Yong Q, Ragauskas AJ (2018) Materialia 4:237–246

  51. 51.

    Huang C, Bhagia S, Hao N, Meng X, Liang L, Yong Q, Ragauskas AJ (2019) RSC Adv 9:5786–5793

  52. 52.

    Semdé R, Gondi RFG, Sombié BC, Yaméogo BGJ, Ouédraogo M (2012) J Adv Pharm Technol Res 3:100–105

  53. 53.

    Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Carbohydr Polym 80:852–859

  54. 54.

    Badr Y, Mahmoud MA (2006) J Appl Polym Sci 99:3608–3614

  55. 55.

    Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Biomacromolecules 11:674–681

  56. 56.

    Zhai Y, Cui FZ, Wang Y (2005) Curr Appl Phys 5:429–432

  57. 57.

    Chen X, Yu J, Zhang Z, Lu C (2011) Carbohydr Polym 85:245–250

  58. 58.

    Zhang CY, Lu H, Zhuang Z, Wang XP, Fang QF (2010) J Mater Sci Mater Med 21:3077–3083

  59. 59.

    Chang C, Peng N, He M, Teramoto Y, Nishio Y, Zhang L (2013) Carbohydr Polym 91:7–13

  60. 60.

    Fenglan X, Yubao L, Xuejiang W, Jie W, Aiping Y (2004) J Mater Sci 39:5669–5672

  61. 61.

    Dorozhkin SV (2010) Acta Biomater 6:715–734

  62. 62.

    Killeen D, Frydrych M, Chen B (2012) Mater Sci Eng C 32:749–757

  63. 63.

    Costa HS, Mansur AAP, Barbosa-Stancioli EF, Pereira MM, Mansur HS (2007) J Mater Sci 587:510–524

Download references

Acknowledgements

This work was partially supported by the Center for Advanced Studies for Agriculture and Food, Institute for Advanced Studies, Kasetsart University Under the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Ministry of Education, Thailand. The authors are grateful to the Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok Thailand for providing all laboratory equipment.

Funding

This study was funded by Center for Advanced Studies for Agriculture and Food, Institute for Advanced Studies, Kasetsart University Under the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Ministry of Education, Thailand.

Author information

Correspondence to Prakit Sukyai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panyasiri, P., Lam, N.T. & Sukyai, P. The Effect of Hydroxyapatite Prepared by In Situ Synthesis on the Properties of Poly(Vinyl Alcohol)/Cellulose Nanocrystals Biomaterial. J Polym Environ 28, 141–151 (2020) doi:10.1007/s10924-019-01599-5

Download citation

Keywords

  • Polyvinyl alcohol
  • Cellulose nanocrystals
  • Hydroxyapatite
  • Scaffold