Advertisement

Development and Characterization of Natural Rubber Latex and Polylactic Acid Membranes for Biomedical Application

  • Mariana Biondi CesarEmail author
  • Felipe Azevedo Borges
  • Ana Paula Bilck
  • Fábio Yamashita
  • Cristiane Garcia Paulino
  • Rondinelli Donizetti HerculanoEmail author
Original paper
  • 17 Downloads

Abstract

Natural rubber latex from the Hevea brasiliensis has been of great importance in areas such as medicine and bioengineering, due to its angiogenic and wound healing activity. However, the biodegradability of natural rubber latex is not significant when compared to other polymers used for the development of materials with biomedical applications, which is important to avoid medical intervention to remove them. Thus, the aim of this work was to improve the biodegradability and subsequent bioabsorption of natural rubber latex membranes associating them with the polylactic acid, a biodegradable, bioreabsorbable and biocompatible polymer, besides being the most studied in biomedical, pharmaceutical and environmental fields. The membranes were prepared with different mass proportions of the polymers with dichloromethane as solvent. The material were submitted to mechanical test, infrared spectroscopy, scanning electron microscopy, water vapor transmission, swelling, in vitro degradation and hemolysis assay. The different polymer proportions influenced the membrane properties. The infrared spectroscopy indicating that no new chemical interactions were formed, and the scanning electron microscopy showed a polymer network formed in membranes with the highest natural rubber latex mass proportion. With the increase of polylactic acid in the membranes, there was an improvement in the degradation of the material of up to 130% and no hemolytic effect was observed, making it interesting for biomedical application.

Keywords

Natural rubber latex Polylactic acid Membranes Polymer blend Biodegradability 

Notes

Acknowledgements

The authors acknowledge the support of FAPESP (Processes 2016/09736-8 and 2017/19603-8).

References

  1. 1.
    Barros NR et al (2015) (2015) Diclofenac potassium transdermal patches using natural rubber latex biomembranes as carrier. J Mater 1:1–7Google Scholar
  2. 2.
    Shin H et al (2003) Biomimetic materials for tissue engineering. Biomaterials 24(24):4353–4364PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95CrossRefGoogle Scholar
  4. 4.
    Jahno VD et al (2007) Chemical synthesis and in vitro biocompatibility tests of poly (L-lactic acid). J Biomed Mater Res A 83(1):209–215PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Miranda MCR et al (2017) Porosity effects of natural latex (Hevea brasiliensis) on release of compounds for biomedical applications. J Biomater Sci Polym Edition 28(18):2117–2130CrossRefGoogle Scholar
  6. 6.
    Mrué F et al (2004) Evaluation of the biocompatibility of a new biomembrane. Mater Res 7(2):277–283CrossRefGoogle Scholar
  7. 7.
    Miranda MCR et al (2018) Evaluation of peptides release using a natural rubber latex biomembrane as a carrier. Amino Acids 50(5):503–511PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Ereno C et al (2010) Latex use as an occlusive membrane for guided bone regeneration. J Biomed Mater Res A 95(3):932–939PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Ferreira M et al (2009) Angiogenic properties of natural rubber latex biomembranes and the serum fraction of Hevea brasiliensis. Braz J Phys 39(3):564–569CrossRefGoogle Scholar
  10. 10.
    Frade M et al (2004) Management of diabetic skin wounds with a natural latex biomembrane. Med Cután Ibero-Latino-Americana 32(4):157–162Google Scholar
  11. 11.
    Shasteen C, Choy YB (2011) Controlling degradation rate of poly(lactic acid) for its biomedical applications. Biomed Eng Lett 1(163):163–167CrossRefGoogle Scholar
  12. 12.
    Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21(3):117–132CrossRefGoogle Scholar
  13. 13.
    Bergström JS, Hayman D (2015) An overview of mechanical properties and material modeling of polylactide (PLA) for medical applications. Ann Biomed Eng 44(2):330–340PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices Biomaterials 21(23):2335–2346PubMedPubMedCentralGoogle Scholar
  15. 15.
    Liao SS et al (2004) Hierarchically biomimetic bone scaffold materials: Nano-HA/collagen/PLA composite. J Biomed Mater Res B 69(2):158–165CrossRefGoogle Scholar
  16. 16.
    Danoux CB et al (2014) In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Biomatter 4(1):1–12CrossRefGoogle Scholar
  17. 17.
    Romeira KM, Drago BC, Murbach HD et al. (2012) Evaluation of Stryphnodendron sp. release using natural rubber latex membrane as carrier. J Appl Sci 12(7): 93–697Google Scholar
  18. 18.
    Herculano RD et al (2009) Natural rubber latex used as drug delivery system in guided bone regeneration (GBR). Mater Res 12(2):253–256CrossRefGoogle Scholar
  19. 19.
    Prezotti FG et al (2012) Preparation and characterization of free films of high amylose/pectin mixtures cross-linked with sodium trimetaphosphate. Drug Dev Ind Pharm 38(11):1354–1359PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Meneguin AB et al (2014) Films from resistant starch-pectin dispersions intended for colonic drug delivery. Carbohydr Polym 99(1):140–149PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Borges FA et al (2017) Application of natural rubber latex as scaffold for osteoblast to guided bone regeneration. J Appl Polym Sci 134(39):1–10CrossRefGoogle Scholar
  22. 22.
    Aldana DS et al (2014) Barrier properties of polylactic acid in cellulose based packages using montmorillonite as filler. Polymers 6(9):2386–2403CrossRefGoogle Scholar
  23. 23.
    Zhu A, Zhang M, Wu J, Shen J (2002) Covalent immobilization of chitosan/heparin complex with a photosensitive hetero-bifunctional crosslinking reagent on PLA surface. Biomaterials 23(23):4657–4665PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    van den Brink RW et al (1998) Catalytic oxidation of dichloromethane on γ-Al2O3: a combined flow and infrared spectroscopic study. J Catal 180(2):153–160CrossRefGoogle Scholar
  25. 25.
    Mathew AP, Oskmam K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025CrossRefGoogle Scholar
  26. 26.
    Rhim JW, Mohanty AK, Singh SP, Ng PKW (2006) Effect of the processing methods on the performance of polylactide films: thermocompression versus solvent casting. J Appl Polym Sci 101(6):3736–3742CrossRefGoogle Scholar
  27. 27.
    Rhim JW, Hong SI, Ha CS (2009) Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT-Food Sci Technol 42(2):612–617CrossRefGoogle Scholar
  28. 28.
    Jonoobi M, Harun J, Mathew AP, Oskman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70(12):1742–1747CrossRefGoogle Scholar
  29. 29.
    Karst D, Yang T (2006) Molecular modeling study of the resistance of PLA to hydrolysis based on the blending of PLLA and PDLA. Polymer 47(13):4845–4850CrossRefGoogle Scholar
  30. 30.
    Xu H, Teng C, Yu M (2006) Improvements of thermal property and crystallization behavior of PLLA based multiblock copolymer by forming stereocomplex with PDLA oligomer. Polymer 4(11):3922–3928CrossRefGoogle Scholar
  31. 31.
    Garms BC et al (2017) Characterization and microbiological application of ciprofloxacin loaded in natural rubber latex membranes. Br J Pharm Res 15(1):1–10CrossRefGoogle Scholar
  32. 32.
    Murbach HD, Ogawa GI, Borges FA et al (2014) (2014) Ciprofloxacin release using natural rubber latex membranes as carrier. Int J Biomater 1:1–7CrossRefGoogle Scholar
  33. 33.
    Saijun D et al (2009) Water absorption and mechanical properties of water-swellable natural rubber Songklanakarin. J Sci Technol 31(5):561–565Google Scholar
  34. 34.
    Mirzaali MJ et al (2016) Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone 93(1):196–211PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Libonati F, Vergani L (2016) Understanding the structure–property relationship in cortical bone to design a biomimetic composite. Compos Struct 139(1):188–198CrossRefGoogle Scholar
  36. 36.
    Kolk A et al (2012) Current trends and future perspectives of bone substitute materials—from space holders to innovative biomaterials. J Cranio-Maxillo-Facial Surg 40(8):706–718CrossRefGoogle Scholar
  37. 37.
    Chang-Min S et al (2003) Tensile characteristics and behavior of blood vessels from human brain in uniaxial tensile test KSME. Int J 17(7):1016–1025Google Scholar
  38. 38.
    Halász K, Hozakun Y (2015) Csóka L (2015) Reducing water vapor permeability of poly(lactic acid) film and bottle through layer-by-layer deposition of green-processed cellulose nanocrystals and chitosan. Int J Polym Sci 1:1–6CrossRefGoogle Scholar
  39. 39.
    Shuai S et al (2010) (2010) Preparation and characterization of microporous poly (D, L-lactic acid) film for tissue engineering scaffold. Int J Nanomed 5:1049–1055Google Scholar
  40. 40.
    Proikakis CS et al (2006) Swelling and hydrolytic degradation of poly(D, L-lactic acid) in aqueous solutions. Polym Degrad Stab 9(3):614–619CrossRefGoogle Scholar
  41. 41.
    Sato S et al (2012) Effects of various liquid organic solvents on solvent-induced crystallization of amorphous poly(lactic acid) film. J Appl Polym Sci 12(3):1607–1617CrossRefGoogle Scholar
  42. 42.
    Ho CC, Khew MC (2000) Surface free energy analysis of natural and modified natural rubber latex films by contact angle method. Langmuir 1(3):1407–1414CrossRefGoogle Scholar
  43. 43.
    Ishii D et al (2009) In vivo tissue response and degradation behavior of PLLA and stereocomplexed PLA nanofibers. Biomacromol 10(2):237–242CrossRefGoogle Scholar
  44. 44.
    Holy CE et al (1999) In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. Biomaterials 20(13):1177–1185PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Reed AM, Gilding DK (1981) Biodegradable polymers for use in surgery-poly(glycolic)/poly(lactic acid) homo and copolymers: 2. In vitro degradation. Polymer 22(4):494–498CrossRefGoogle Scholar
  46. 46.
    You Y et al (2005) In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). J Appl Polym Sci 95(2):193–200CrossRefGoogle Scholar
  47. 47.
    Andiappan M et al (2013) Electrospun eri silk fibroin scaffold coated with hydroxyapatite for bone tissue engineering applications. Progr Biomater 2(6):1–11Google Scholar
  48. 48.
    Borges FA et al (2015) Natural rubber latex coated with calcium phosphate for biomedical application. J Biomater Sci 26(17):1256–1268CrossRefGoogle Scholar
  49. 49.
    Henkelman S et al (2009) Standardization of incubation conditions for hemolysis testing of biomaterials. Mater Sci Eng C 29(5):1650–1654CrossRefGoogle Scholar
  50. 50.
    Alippilakkotte S et al (2017) Fabrication of PLA/Ag nanofibers by green synthesis method using Momordica charantia fruit extract for wound dressing applications. Colloids Surf A 529(1):771–782CrossRefGoogle Scholar
  51. 51.
    Floriano JF et al (2018) Ketoprofen loaded in natural rubber latex transdermal patch for tendinitis treatment. J Polym Environ 26(6):2281–2289CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Pharmaceutical SciencesSão Paulo State University (UNESP)AraraquaraBrazil
  2. 2.Institute of ChemistrySão Paulo State University (UNESP)AraraquaraBrazil
  3. 3.Department of Food Science and TechnologyState University of Londrina (UEL)LondrinaBrazil

Personalised recommendations