Advertisement

Fabrication of Poly(lactic acid)/Silkworm Excrement Composite with Enhanced Crystallization, Toughness and Biodegradation Properties

  • Qi-Hong Liao
  • Xiangfang Peng
  • Hui Fang
  • Lih-sheng Turng
  • An HuangEmail author
  • Chao Chan ChangEmail author
Original paper
  • 14 Downloads

Abstract

This study investigated and analyzed the mechanical and thermal properties as well as biodegradability of bio-plastic Poly(lactic acid) (PLA) and PLA/silkworm excrement (PLA/SE) composites fabricated by injection molding. Differential scanning calorimetry (DSC) results demonstrated that SE enhanced the crystallization ability of PLA represented by the increased crystallinity. The tensile strength of PLA/SE composites did not enhance when adding SE due to SE particles became drawbacks while stretching as well as the lower tensile strength of SE than PLA. However, the impact strength of PLA/SE 10% was enhanced approximately 30.1%, comparing with neat-PLA. Biodegradation experiment showed that PLA/SE composites had faster and obvious disintegration in 7 weeks, especially PLA/SE 20% composite, which indicating SE enhanced the biodegradability of PLA. Additionally, neat-PLA and the PLA in PLA/SE composites can be fully biodegraded.

Keywords

Polylactic acid (PLA) Silkworm excrement (SE) Injection molding Biodegradability 

Notes

Acknowledgements

The authors would like to acknowledge the support of National Taiwan University of Science and Technology; Taiwan Ministry of Education; Fujian university of technology; South China University of Technology; Wisconsin Institute for Discovery (WID), University of Wisconsin–Madison. Thanks to the help of Prof. Chao Chan Chang, and Prof. Lih-Sheng Turng.

References

  1. 1.
    Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biotechnol Adv 26:246CrossRefGoogle Scholar
  2. 2.
    Nampoothiri KM, Nair NR, John RP (2010) Bioresource Technol 101:8493CrossRefGoogle Scholar
  3. 3.
    Siparsky GL, Voorhees KJ, Dorgan JR, Schilling K (1997) J Environ Polym Degrad 5(3):125Google Scholar
  4. 4.
    Lopes MS, Jardini AL, Filho RM (2012) Procedia Eng 42:1402CrossRefGoogle Scholar
  5. 5.
    Jiang L, Zhang J (2013) Biodegradable polymers and polymer blends. Handbook Biopolym Biodegrad Plastics.  https://doi.org/10.1016/B978-1-4557-2834-3.00006-9 CrossRefGoogle Scholar
  6. 6.
    Elduque A, Elduque D, Javierre C, Fernández Á, Santolaria J (2015) J Clean Prod 108:80CrossRefGoogle Scholar
  7. 7.
    Arrieta MP, López J, López D, Kenny JM, Peponi L (2016) Ind Crop Prod 93:290CrossRefGoogle Scholar
  8. 8.
    Colomines G, Domenek S, Ducruet V, Guinault A (2008) Int J Mater Form 1(1):607CrossRefGoogle Scholar
  9. 9.
    Huang Y, Zhang C, Pan Y, Zhou Y, Jiang L, Dan Y (2013) Polym Degrad Stabil 98:943CrossRefGoogle Scholar
  10. 10.
    Gardella L, Calabrese M, Monticelli O (2014) Colloid Polym Sci 292(9):2391CrossRefGoogle Scholar
  11. 11.
    Chu C, Li X, Yu W, Han L, Bai J, Xue F (2019) J Mater Sci 54(6):4701CrossRefGoogle Scholar
  12. 12.
    Simmons H, Kontopoulou M (2018) Polym Degrad Stabil 158:228CrossRefGoogle Scholar
  13. 13.
    Mikos AG (1994) Polymer 35:1068CrossRefGoogle Scholar
  14. 14.
    Corre YM, Maazouz A, Duchet J, Reignier J (2011) J Supercrit Fluid 58:177CrossRefGoogle Scholar
  15. 15.
    Matuana LM (2008) Bioresource Technol 99:3643CrossRefGoogle Scholar
  16. 16.
    Vimolmangkang S, Somkhanngoen C, Sukrong S (2013) Chiang Mai J Sci 41:97Google Scholar
  17. 17.
    Cai L, Shao H, Hu X, Zhang Y (2015) Acs Sustain Chem Eng 3:2551CrossRefGoogle Scholar
  18. 18.
    Lee SH, Wang S (2006) Compos Part A 37:80CrossRefGoogle Scholar
  19. 19.
    Lee HT, Lee DS (2002) Macromol Res 10(6):359CrossRefGoogle Scholar
  20. 20.
    Kim GM, Michler GH (1998) Polymer 39:5689CrossRefGoogle Scholar
  21. 21.
    Lin Y, Chan CM (2012) 3–Calcium carbonate nanocomposites, Advances in Polymer NanocompositesGoogle Scholar
  22. 22.
    Li MX, Kim SH, Choi SW, Goda K, Lee WI (2016) Compos B 96:248CrossRefGoogle Scholar
  23. 23.
    Huang A, Kharbas H, Ellingham T, Mi HY, Turng LS, Peng XF (2017) Polym Eng Sci 57:570CrossRefGoogle Scholar
  24. 24.
    Huang A, Peng X, Turng LS (2018) Polymer 134:263CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringFujian University of TechnologyFuzhouChina
  2. 2.National Taiwan University of Science and TechnologyTaipeiTaiwan
  3. 3.School of Mechanical & Automotive EngineeringSouth China University of TechnologyGuangzhouChina
  4. 4.Wisconsin Institute for DiscoveryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations