Advertisement

Journal of Polymers and the Environment

, Volume 28, Issue 1, pp 123–130 | Cite as

Development of Biodegradable Films with Improved Antioxidant Properties Based on the Addition of Carrageenan Containing Olive Leaf Extract for Food Packaging Applications

  • Gabriela Silveira da RosaEmail author
  • Sai Kranthi Vanga
  • Yvan Gariepy
  • Vijaya Raghavan
Original paper
  • 46 Downloads

Abstract

This study aims at evaluating the bioactive compounds from olive leaf extract and to develop biodegradable carrageenan films with antioxidant properties by incorporating varying concentrations of olive leaf extract. The olive leaf extract obtained by MAE solvent-free had high antioxidant activity and has great potential for use as functional ingredient in food packaging. The results of thickness of biofilms were in the range of 0.097 to 0.162 mm and showed significant difference. Despite the addition of extract into biofilm resulted in a slight increase in the stretching capacity, reduction in its tensile strength and a higher water vapor permeability, the biodegradable films based on carrageenan containing olive leaf exhibited good barrier properties and mechanical properties. The total phenolic compounds and antioxidant activity of films significantly increased with an increase in olive leaf extract concentration, which means that the process to obtain the films does not provoke a degradation of these bio compounds. The incorporation of natural antioxidants appears to be a potential strategy to add additives into packaging material suitable for food products.

Keywords

Biodegradable Phenolic compounds Antioxidant activity 

Notes

Acknowledgements

The authors would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES) and the Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support.

Compliance with Ethical Standards

Conflict of interest

The authors have no conflicts of interest to report.

References

  1. 1.
    Tabera J, Guinda A, Ruiz-Rodríguez A, Señoráns FJ, Ibáñez E, Albi T, Reglero G (2004) J Agric Food Chem 52:4774PubMedGoogle Scholar
  2. 2.
    Bouaziz M, Sayadi S (2005) Eur J Lipid Sci Technol 107:497Google Scholar
  3. 3.
    Jemai H, Bouaziz M, El Feki A, Sayadi S (2008) Chem Biol Interact 176(2–3):88–98PubMedGoogle Scholar
  4. 4.
    Omar SH (2010) Sci Pharm 78:133PubMedPubMedCentralGoogle Scholar
  5. 5.
    Savournin C, Baghdikian B, Elias R, Dargouth-Kesraoui F, Boukef K, Balansard G (2001) J Agric Food Chem 49:618PubMedGoogle Scholar
  6. 6.
    Albertos I, Avena-Bustillos RJ, Martín-Diana AB, Du W-X, Rico D, McHugh TH (2017) Food Packag Shelf Life 13:49Google Scholar
  7. 7.
    Campos CA, Gerchenson LN, Flores SK (2011) Food Biop Techn 4:849Google Scholar
  8. 8.
    Rhim JW (2012) J Food Sci 77:66Google Scholar
  9. 9.
    Salmieri S, Lacroix L (2006) J Agric Food Chem 56:10205Google Scholar
  10. 10.
    Campo VL, Kawano DF, Silva DB, Carvalho I (2009) Carbohydr Polym 77:167Google Scholar
  11. 11.
    Perrechil F, Vilela J, Guerreiro LM, Cunha RL (2012) Food Biophys 7(3):264–275Google Scholar
  12. 12.
    Sedayu BB, Cran MJ, Bigger SW (2018) J Polym Environ 26:3754Google Scholar
  13. 13.
    De Ruiter GA, Rudolph B (1997) Trends Food Sci Technol 8:389Google Scholar
  14. 14.
    Park H (1996) Food Sci Ind 29:47Google Scholar
  15. 15.
    Varela P, Fiszman SM (2011) Food Hydrocolloids 25:1801Google Scholar
  16. 16.
    Licciardello F, Wittenauer J, Saengerlaub S, Reinelt M, Stramm C (2015) Food Packag Shelf Life 6:1Google Scholar
  17. 17.
    Marcos B, Sárraga C, Castellari M, Kappen F, Schennink G, Arnau J (2014) Food Packag Shelf Life 1:140Google Scholar
  18. 18.
    Moudache M, Colon M, Nerín C, Zaidi F (2016) Food Chem 212:521PubMedGoogle Scholar
  19. 19.
    Rosa GS, Vanga SK, Gariepy Y, Raghavan V Not published yet. Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innovative Food Sci Emerg Technol (2019).Google Scholar
  20. 20.
    Singleton VL, Rossi JA (1965) Am J Enol Vitic 16:144Google Scholar
  21. 21.
    Brand-Williams W, Cuvelier ME, Berset C (1995) LWT-Food Sci Technol 28:25Google Scholar
  22. 22.
    Martiny TR (2017) Development of biodegradable films based on gelatine and carrageenans of the red algae gigartina skottsbergii incorporated with fluid extract of olive leaves. 137 p. MSc. (Master in Engineering), Federal University of Pampa.Google Scholar
  23. 23.
    Ferreira CO, Nunes CA, Delgadillo I, Silva JL (2009) Food Res Int 42:807Google Scholar
  24. 24.
    ASTM. Standard methods of water vapor transmission of materials. Method: E96/ E96M05. Philadelphia: American Society for Testing Materials, 2005.Google Scholar
  25. 25.
    ASTM. Standard test methods for tensile properties on thin plastic sheeting. Method: D 882. Philadelphia: American Society for Testing Materials, 2002.Google Scholar
  26. 26.
    Fares R, Bazzi S, Baydoun SE, Abdel-Massih RM (2011) Plant Foods Hum Nutr 66:58PubMedGoogle Scholar
  27. 27.
    Sahin S, Samlı R (2013) Ultrason Sonochem 20:595PubMedGoogle Scholar
  28. 28.
    Katalinic V, Milos M, Modun D, Musi I, Boban M (2004) Food Chem 86:593Google Scholar
  29. 29.
    Arabshahi-Delouee S, Urooj A (2007) Food Chem 102:1233Google Scholar
  30. 30.
    Zhang B, Yang R, Liu CZ (2008) Sep Purif Technol. 62:480Google Scholar
  31. 31.
    Rafiee Z, Jafari SM, Alami M, Khomeiri M (2011) J Anim Plant Sci 21:738Google Scholar
  32. 32.
    Japón-Luján R, Luque-Rodríguez JM, Luque de Castro MD (2006) Anal Bioanal Chem 385(4), 753–759.PubMedGoogle Scholar
  33. 33.
    Taamalli A, Arráez-Román D, Barrajón-Catalán E, Ruiz-Torres V, Pérez-Sánchez A, Herrero M, Ibañez H, Micol V, Zarrouk M, Segura-Carretero A, Fernández-Gutiérrez A (2012) Food Chem Toxicol 50:1817PubMedGoogle Scholar
  34. 34.
    Abaza L, Ben Youssef N, Manai H, Haddada FM, Methenni K, Zarrouk M (2011) Grasas Aceites 62:96Google Scholar
  35. 35.
    Kim YT, Min B, Kim KW (2013) Innovations in food packaging, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  36. 36.
    Martins JT, Cerqueira MA, Bourbon AI, Pinheiro AC, Souza BWS, Vicente AA (2012) Food Hydrocolloids 29:280Google Scholar
  37. 37.
    Karbowiak T, Debeaufort F, Champion D, Voilley A (2006) Biomacromol 7(6):2011–2019Google Scholar
  38. 38.
    Larotonda FDS (2007) Biodegradable films and coatings obtained from carrageenan from Mastocarpus stellatus and starch from Quercussuber. Faculty of Engineering of the University of Porto. Ph.D thesis.Google Scholar
  39. 39.
    Paula GA, Benevides NMB, Cunha AP, Oliveira AV, Pinto AMB, Morais JPS, Azeredo HMC (2015) Food Hydrocolloids 47:140Google Scholar
  40. 40.
    Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA, Mohammadi A, Ghasemlou M, Hosseini SM, Khaksar R (2014) Carbohydr Polym 101:582PubMedGoogle Scholar
  41. 41.
    Cha DS, Choi JH, Chinnan MS, Park HJ (2002) LWT 35:715Google Scholar
  42. 42.
    McHugh TH, Avena-Bustillos RJ, Krochta JM (1993) J Food Sci 58:899Google Scholar
  43. 43.
    Farris S, Schaich KM, Liu L, Cooke PH, Piergiovanni L, Yam KL (2011) Food Hydrocolloids 25:61Google Scholar
  44. 44.
    Cerqueira MA, Souza BWS, Martins JT, Teixeira JA, Vicente AA (2010) Food Res Int 43:2031Google Scholar
  45. 45.
    Talhaoui N, Gómez-Caravaca AM, León L, de la Rosa R, Segura-Carretero A, Fernández-Gutiérrez A (2014) LWT 58(1):28–34Google Scholar
  46. 46.
    Pastor C, Sánchez-González L, Chiralt A, Cháfer M, González- Martínez C (2013) Food Hydrocolloids 30:272Google Scholar
  47. 47.
    Bermúdez-Oria A, Rodríguez-Gutiérrez G, Vioque B, Rubio-Senent F, Fernández-Bolaños J (2017) Carbohydr Polym 178:368PubMedGoogle Scholar
  48. 48.
    Dashipour A, Razavilar V, Hosseini H, Shojaee-Aliabadi S, German JB, Ghanati K, Khakpour M, Khaksar R (2015) Int J Biol Macromol 72:606PubMedGoogle Scholar
  49. 49.
    Pereira L, Amado AM, Critchley AT, van de Velde F, Ribeiro-Claro PJA (2009) Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocolloids 23(7):1903Google Scholar
  50. 50.
    Pereira L, Sousa A, Coelho H, Amado AM, Ribeiro PJA (2003) Use of FTIR, FT-Raman and 13 C-NMR spectroscopy for identification of some seaweed phycocolloids. Biomol Eng 20(4–6):223–228PubMedGoogle Scholar
  51. 51.
    Aouidi F, Dupuy N, Artaud J, Rousso S, Msallem M, Perraud GI, Hamdi M (2012) Rapid quantitative determination of oleuropein in olive leaves (Olea europaea) using mid-infrared spectroscopy combined with chemometric analyses. Ind Crops Prod 37(1):292Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gabriela Silveira da Rosa
    • 1
    • 2
    Email author
  • Sai Kranthi Vanga
    • 2
  • Yvan Gariepy
    • 2
  • Vijaya Raghavan
    • 2
  1. 1.Chemical EngineeringFederal University of PampaBagéBrazil
  2. 2.Department of Bioresource EngineeringMcGill UniversityQCCanada

Personalised recommendations