Journal of Polymers and the Environment

, Volume 27, Issue 12, pp 2974–2987 | Cite as

N-Silylated Benzothiazolium Dye as a Coupling Agent for Polylactic Acid/Date Palm Fiber Bio-composites

  • Fatima-Zahra Semlali Aouragh Hassani
  • Wafa Ouarhim
  • Marya Raji
  • Mohamed El Mehdi Mekhzoum
  • Mohammed Ouadi Bensalah
  • Hamid Essabir
  • Denis Rodrigue
  • Rachid Bouhfid
  • Abou el kacem QaissEmail author
Original Paper


This work proposes a benzothiazole derivative bearing a silane moiety as a new coupling agent for polylactic acid (PLA) reinforced by date palm fibers (DPFs). The bio-composites are prepared by solution blending followed by melt compounding. From the samples produced, a complete characterization is performed including morphological, mechanical and thermal properties as a function of fiber content. The results show that the proposed fiber treatment is an easy and effective method to improve the interfacial properties and fiber dispersion leading to better material performance. For example, the addition of only 1 wt% of the dye–IPTMS to the bleached DPF not only improved the thermal stability of the biocomposites, but also led to a significant increase of the Young’s modulus at 7 wt% and higher torsion modulus up to 5 wt% (optimum value).


Bio-composite Poly(lactic acid) Date palm fiber Functionalization Solution blending Morphology Mechanical properties Thermal properties 



This work was supported by MAScIR; Moroccan Foundation for Advanced Science, Innovation and Research, MESRSFC and CNRST, Morocco Grant No. 1970/15. The authors would like to thank Mr. Mehdi AitDahi for his fruitful technical support and assistance.


  1. 1.
    Vicentini N, Gatti T, Salice P et al (2015) Covalent functionalization enables good dispersion and anisotropic orientation of multi-walled carbon nanotubes in a poly (L-lactic acid) electrospun nano fibrous matrix boosting neuronal differentiation. Carbon NY 95:725–730. CrossRefGoogle Scholar
  2. 2.
    Lu T, Liu S, Jiang M et al (2014) Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly(lactic acid) composites. Composites B 62:191–197. CrossRefGoogle Scholar
  3. 3.
    Kiziltas A, Nazari B, Gardner DJ, Bousfield DW (2014) Polyamide 6–cellulose composites: effect of cellulose composition on melt rheology and crystallization behavior. Polym Eng Sci 54:739–746. CrossRefGoogle Scholar
  4. 4.
    Bagheriasl D, Carreau PJ, Riedl B et al (2016) Shear rheology of polylactide (PLA)–cellulose nanocrystal (CNC) nanocomposites. Cellulose 23:1885–1897. CrossRefGoogle Scholar
  5. 5.
    Xie Y, Hill CAS, Xiao Z et al (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Composites A 41:806–819. CrossRefGoogle Scholar
  6. 6.
    Demir H, Atikler U, Balko D (2006) The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene–luffa fiber composites. Composites A 37:447–456. CrossRefGoogle Scholar
  7. 7.
    Abdulkhani A, Hosseinzadeh J, Ashori A et al (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73–79. CrossRefGoogle Scholar
  8. 8.
    Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Composites A 42:1189–1196. CrossRefGoogle Scholar
  9. 9.
    Tran TPT, Bénézet JC, Bergeret A (2014) Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA) biocomposites: effects of alkaline and silane surface treatments of husks. Ind Crops Prod 58:111–124. CrossRefGoogle Scholar
  10. 10.
    Mukherjee T, Sani M, Kao N et al (2013) Improved dispersion of cellulose microcrystals in polylactic acid (PLA) based composites applying surface acetylation. Chem Eng Sci 101:655–662. CrossRefGoogle Scholar
  11. 11.
    Goriparthi BK, Suman KNS, Mohan Rao N (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Composites A 43:1800–1808. CrossRefGoogle Scholar
  12. 12.
    Laaziz SA, Raji M, Hilali E et al (2017) Bio-composites based on polylactic acid and argan nut shell: production and properties. Int J Biol Macromol 104:30–42. CrossRefPubMedGoogle Scholar
  13. 13.
    Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68:424–432. CrossRefGoogle Scholar
  14. 14.
    Araújo A, Botelho G, Oliveira M, Machado AV (2014) Influence of clay organic modifier on the thermal-stability of PLA based nanocomposites. Appl Clay Sci 88–89:144–150. CrossRefGoogle Scholar
  15. 15.
    Dong Y, Ghataura A, Takagi H et al (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres: evaluation of mechanical performance and multifunctional properties. Composites A 63:76–84. CrossRefGoogle Scholar
  16. 16.
    Kawamura M, Sato K (2006) Magnetically separable phase-transfer catalysts. Chem Commun 4718–4719Google Scholar
  17. 17.
    Lee B, Im H, Luo H et al (2005) Synthesis and characterization of periodic mesoporous organosilicas as anion exchange resins for perrhenate adsorption. Langmuir 21:5372–5376CrossRefGoogle Scholar
  18. 18.
    Cejas MA, Raymo FM (2005) Fluorescent diazapyrenium films and their response to dopamine. Langmuir 21:5795–5802CrossRefGoogle Scholar
  19. 19.
    Britcher LG, Kehoe DC, Matisons JG, Swincer AG (1995) Siloxane coupling agents. Society 3110–3118. CrossRefGoogle Scholar
  20. 20.
    Chollakup R, Smitthipong W, Kongtud W, Tantatherdtam R (2013) Polyethylene green composites reinforced with cellulose fibers (coir and palm fibers): effect of fiber surface treatment and fiber content. J Adhes Sci Technol 27:1290–1300. CrossRefGoogle Scholar
  21. 21.
    Boujmal R, Essabir H, Nekhlaoui S et al (2014) Composite from polypropylene and henna fiber: structural, mechanical and thermal properties. J Biobased Mater Bioenergy 8:246–252CrossRefGoogle Scholar
  22. 22.
    Essabir H, Achaby ME, Hilali EM et al (2015) Morphological, structural, thermal and tensile properties of high density polyethylene composites reinforced with treated argan nut shell particles. J Bionic Eng 12:129–141CrossRefGoogle Scholar
  23. 23.
    Ouarhim W, Bensalah M, Rodrigue D et al (2018) Production and characterization of high density polyethylene reinforced by eucalyptus capsule fibers. J Bionic Eng 15:558–566CrossRefGoogle Scholar
  24. 24.
    Marwah R, Ibrahim NA, Zainuddin N et al (2014) The effect of fiber bleaching treatment on the properties of poly(lactic acid)/oil palm empty fruit bunch fiber composites. Int J Mol Sci 15:14728–14742. CrossRefGoogle Scholar
  25. 25.
    Liu H, Zhang L (2000) Silylation of cellulose with trichlorosilane and triethoxysilane in homogeneous LiCl/N,N-dimethylacetamide solution. Chin J Polym Sci (Engl Ed 18:161–168Google Scholar
  26. 26.
    Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Composites A 39:1632–1637. CrossRefGoogle Scholar
  27. 27.
    Al-Kaabi K, Al-Khanbashi A, Hammami A (2005) Date palm fibers as polymeric matrix reinforcement: DPF/polyester composite properties. Polym Compos 26:604–613. CrossRefGoogle Scholar
  28. 28.
    El Mechtali FZ, Essabir H, Nekhlaoui S et al (2015) Mechanical and thermal properties of polypropylene reinforced with almond shells particles: impact of chemical treatments. J Bionic Eng 12:483–494CrossRefGoogle Scholar
  29. 29.
    Al-Khanbashi A, Al-Kaabi K, Hammami A (2005) Date palm fibers as polymeric matrix reinforcement: fiber characterization. Polym Compos 26:486–497. CrossRefGoogle Scholar
  30. 30.
    Rosa MF, Medeiros ES, Malmonge JA et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92. CrossRefGoogle Scholar
  31. 31.
    Thomas MG, Abraham E, Jyotishkumar P et al (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. Int J Biol Macromol 81:768–777. CrossRefPubMedGoogle Scholar
  32. 32.
    Shih YF, Huang CC (2011) Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. J Polym Res 18:2335–2340. CrossRefGoogle Scholar
  33. 33.
    Mofokeng JP, Luyt AS, Tábi T, Kovács J (2012) Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. J Thermoplast Compos Mater 25:927–948. CrossRefGoogle Scholar
  34. 34.
    Senatov FS, Niaza KV, Zadorozhnyy MY et al (2016) Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater 57:139–148. CrossRefPubMedGoogle Scholar
  35. 35.
    Huda MS, Drzal LT, Misra M et al (2005) A study on biocomposites from recycled newspaper fiber and poly(lactic acid). Ind Eng Chem Res 44:5593–5601. CrossRefGoogle Scholar
  36. 36.
    Li Z, Luo G, Wei F, Huang Y (2006) Microstructure of carbon nanotubes/PET conductive composites fibers and their properties. Compos Sci Technol 66:1022–1029CrossRefGoogle Scholar
  37. 37.
    Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67:1627–1639. CrossRefGoogle Scholar
  38. 38.
    Oksman K, Skrifvars M, Selin J (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324. CrossRefGoogle Scholar
  39. 39.
    Haafiz MKM, Hassan A, Zakaria Z et al (2013) Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydr Polym 98:139–145. CrossRefPubMedGoogle Scholar
  40. 40.
    Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol 70:815–821. CrossRefGoogle Scholar
  41. 41.
    Essabir H, Bensalah MO, Bouhfid R, Qaiss A (2014) Fabrication and characterization of apricot shells particles reinforced high density polyethylene based bio-composites: mechanical and thermal properties. J Biobased Mater Bioenergy 8:344–351. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fatima-Zahra Semlali Aouragh Hassani
    • 1
    • 2
  • Wafa Ouarhim
    • 1
    • 2
  • Marya Raji
    • 1
  • Mohamed El Mehdi Mekhzoum
    • 1
  • Mohammed Ouadi Bensalah
    • 2
  • Hamid Essabir
    • 1
    • 3
  • Denis Rodrigue
    • 4
  • Rachid Bouhfid
    • 1
  • Abou el kacem Qaiss
    • 1
    Email author
  1. 1.Composites and Nanocomposites CenterMoroccan Foundation for Advanced Science, Innovation and Research (MAScIR)RabatMorocco
  2. 2.Mechanics of Materials Laboratory, Faculty of ScienceMohammed V-Rabat, UniversityRabatMorocco
  3. 3.National School of Applied Science of AgadirIbn Zohr UniversityAgadirMorocco
  4. 4.Department of Chemical Engineering and CERMAUniversité LavalQuebecCanada

Personalised recommendations