Development of Poly(lactic acid) Nanocomposites Reinforced with Hydrophobized Bacterial Cellulose

  • Jhon Alejandro Ávila Ramírez
  • Jimena Bovi
  • Celina Bernal
  • María Inés Errea
  • María Laura ForestiEmail author
Original paper


Poly(lactic acid)/bacterial cellulose nanocomposites were prepared by solvent casting. Aiming to reduce the incompatibility between polar bacterial cellulose (BC) and the nonpolar poly(lactic acid) (PLA) matrix which induces filler aggregation and poor reinforcement dispersion, BC was acetylated by the use of a non-conventional route catalyzed by citric acid. The derivatized BC (AcBC) was incorporated into de PLA matrix at varying filler loadings, and optical, morphological, structural, thermal, tensile and barrier (water vapor) properties of PLA/AcBC in comparison with PLA/BC were evaluated. Noticeable changes in the nanocomposite properties were ascribed to the success of the route proposed to surface hydrophobize BC, which significantly improved its dispersibility within the PLA matrix and the matrix-filler interaction. By the way, the variation of filler loading allowed attaining remarkable increases in the nanocomposite films stiffness without significant reductions in tensile strength and water vapor permeability.


Bacterial cellulose Acetylation Poly(lactic acid) Nanocomposites Filler content 



Authors acknowledge Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- PIP 11220150100660CO), University of Buenos Aires (UBACyT 20020170100696BA) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 0843 2016 – PRESTAMO BID) for financial support.

Compliance with Ethical Standards

Conflict of interest

The authors confirm that this article content has no conflict of interest.


  1. 1.
    Scaffaro R, Maio A, Sutera F, Gulino EF, Morreale M (2019) Polymers 11:651PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Avérous L (2004) J Macromol Sci C 44:231CrossRefGoogle Scholar
  3. 3.
    Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Compr Rev Food Sci F 9:552CrossRefGoogle Scholar
  4. 4.
    Avérous L (2008) In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, vol 1. Elsevier, Amsterdam, p 433CrossRefGoogle Scholar
  5. 5.
    Petersen N, Gatenholm P (2011) Appl Microbiol Biot 91:1277CrossRefGoogle Scholar
  6. 6.
    Panaitescu DM, Frone AN, Chiulan I (2016) Ind Crop Prod 93:251CrossRefGoogle Scholar
  7. 7.
    John MJ, Thomas S (2008) Carbohydr Polym 71:343CrossRefGoogle Scholar
  8. 8.
    Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2015) Composites A 83:2CrossRefGoogle Scholar
  9. 9.
    Kian LK, Saba N, Jawaid M, Sultan MTH (2019) Int J Biol Macromol 121:1314PubMedCrossRefGoogle Scholar
  10. 10.
    Nechyporchuk O, Belgacem MN, Bras J (2016) Ind Crop Prod 93:2CrossRefGoogle Scholar
  11. 11.
    Ferreira FV, Mariano M, Rabel SC, Gouveia RF, Lona LMF (2018) Appl Surf Sci 436:1113CrossRefGoogle Scholar
  12. 12.
    Pinheiro IF, Ferreira FV, Alves GF, Rodolfo A Jr, Morales AR, Mei LHI (2019) J Polym Environ 27:757CrossRefGoogle Scholar
  13. 13.
    Iguchi M, Yamanaka S, Budhiono A (2000) J Mater Sci 35:261CrossRefGoogle Scholar
  14. 14.
    Brown EE, Laborie MPG (2007) Biomacromol 8:3074CrossRefGoogle Scholar
  15. 15.
    Berglund LA, Peijs T (2010) MRS Bull 35:201CrossRefGoogle Scholar
  16. 16.
    Isogai A, Saito T, Fukuzumi H (2011) Nanoscale 3:71PubMedCrossRefGoogle Scholar
  17. 17.
    Tardy BL, Yokota S, Ago M, Xiang W, Kondo T, Bordes R, Rojas OJ (2017) Curr Opin Colloid Int Sci 29:57CrossRefGoogle Scholar
  18. 18.
    Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) Biomacromol 12:2456CrossRefGoogle Scholar
  19. 19.
    Littunen K, Hippi U, Johansson LS, Österberg M, Tammelin T, Laine J, Seppälä J (2011) Carbohydr Polym 84:1039CrossRefGoogle Scholar
  20. 20.
    Lonnberg H, Larsson K, Lindström T, Hult A, Malmström E (2011) ACS Appl Mater Interfaces 3:1426PubMedCrossRefGoogle Scholar
  21. 21.
    Moon RJ, Martini A, Nairn J, Simonsenf J, Youngblood J (2011) Chem Soc Rev 40:3941PubMedCrossRefGoogle Scholar
  22. 22.
    Johansson LS, Tammelin T, Campbell JM, Setälä H, Österberg M (2011) Soft Matter 7:10917CrossRefGoogle Scholar
  23. 23.
    Missoum K, Belgacem MN, Bras J (2013) Materials 6:1745PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Habibi Y (2014) Chem Soc Rev 43:1519CrossRefPubMedGoogle Scholar
  25. 25.
    Kim DY, Nishiyama Y, Kuga S (2002) Cellulose 9:361CrossRefGoogle Scholar
  26. 26.
    Nogi M, Abe K, Handa K, Nakatsubo F, Ifuku S, Yano H (2006) Appl Phys Lett 89:233123CrossRefGoogle Scholar
  27. 27.
    Lee KY, Quero F, Blaker JJ, Hill CAS, Eichhorn SJ, Bismarck A (2011) Cellulose 18:595CrossRefGoogle Scholar
  28. 28.
    Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Carbohydr Polym 83:1834CrossRefGoogle Scholar
  29. 29.
    Tomé LC, Pinto RJB, Trovatti E, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2011) Green Chem 13:419CrossRefGoogle Scholar
  30. 30.
    Cunha AG, Zhou Q, Larsson PT, Berglund LA (2014) Cellulose 21:2773CrossRefGoogle Scholar
  31. 31.
    Ávila Ramírez JA, Gómez Hoyos C, Arroyo S, Cerrutti P, Foresti ML (2016) Carbohydr Polym 153:686PubMedCrossRefGoogle Scholar
  32. 32.
    Ávila Ramírez JA, Gómez Hoyos C, Arroyo S, Cerrutti P, Foresti ML (2016) Curr Organocatal 3:161CrossRefGoogle Scholar
  33. 33.
    Ávila Ramírez JA, Cerrutti P, Bernal C, Errea MI, Foresti ML (2018) J Polym Environ 27:510CrossRefGoogle Scholar
  34. 34.
    Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012) Polym Degrad Stab 97:2027CrossRefGoogle Scholar
  35. 35.
    Cerrutti P, Roldán P, Martínez García R, Galvagno MA, Vázquez A, Foresti ML (2016) J Appl Polym Sci 133:43109CrossRefGoogle Scholar
  36. 36.
    Hestrin A, Schramm M (1954) Biochem J 58:345PubMedPubMedCentralGoogle Scholar
  37. 37.
    Ávila Ramírez JA, Juan Suriano C, Cerrutti P, Foresti ML (2014) Carbohydr Polym 114:416PubMedCrossRefGoogle Scholar
  38. 38.
    Ilharco LM, Gracia RR, da Silva JL, Ferreira LFV (1997) Langmuir 13:4126CrossRefGoogle Scholar
  39. 39.
    Segal L, Creely JJ, Martin AE, Conrad CM (1959) Text Res J 29:786CrossRefGoogle Scholar
  40. 40.
    Karim MN, Afroj S, Rigout M, Yeates SG, Carr C (2015) J Mater Sci 50:4576CrossRefGoogle Scholar
  41. 41.
    Zhao LL, Su JJ, Han J, Zhanga B, Oua L (2017) RSC Adv 7:23065CrossRefGoogle Scholar
  42. 42.
    Oksman K, Mathew AP (2014) In: Oksman K, Mathew AP, Bismarck A, Rojas O, Mohini S (eds) Handbook of green materials: processing technologies, properties and applications, vol 2. World Scientific, Singapore, p 53CrossRefGoogle Scholar
  43. 43.
    Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Biomacromol 11:454CrossRefGoogle Scholar
  44. 44.
    Kim Y, Jung R, Kim HS, Jin HY (2009) Curr Appl Phys 9:S69CrossRefGoogle Scholar
  45. 45.
    Zhang X, Li W, Ye B, Lin Z, Rong J (2011) J Thermoplast Compos Mater 26:346CrossRefGoogle Scholar
  46. 46.
    Mathew AP, Oksman K, Sain M (2005) J Appl Polym Sci 97:2014CrossRefGoogle Scholar
  47. 47.
    Wang Y, Funari SS, Mano JF (2006) Macromol Chem Phys 207:1262CrossRefGoogle Scholar
  48. 48.
    Tábi T, Sajó IE, Szabó F, Luyt AS, Kovács JG (2010) Express Polym Lett 4:659CrossRefGoogle Scholar
  49. 49.
    Ambrosio-Martın J, Fabra MJ, Lopez-Rubio A, Lagaron JM (2015) Cellulose 22:1201CrossRefGoogle Scholar
  50. 50.
    Blaker JJ, Lee KY, Walters M, Drouet M, Bismarck A (2014) React Funct Polym 85:185CrossRefGoogle Scholar
  51. 51.
    Fortunati E, Luzia F, Puglia D, Petrucci R, Kenny JM, Torre L (2015) Ind Crop Prod 67:439CrossRefGoogle Scholar
  52. 52.
    Mofokeng JP, Luyt AS, Tábi T, Kovács J (2011) J Thermoplast Compos Mater 25:927CrossRefGoogle Scholar
  53. 53.
    Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Compos Sci Technol 70:1742CrossRefGoogle Scholar
  54. 54.
    Ferreira FV, Dufresne A, Pinheiro IF, Souza DHS, Gouveia RF, Mei LHI, Lona LMF (2018) Eur Polym J 108:274CrossRefGoogle Scholar
  55. 55.
    Bulota M, Kreitsmann K, Hughes M, Paltakari J (2012) J Appl Polym Sci 126:E448CrossRefGoogle Scholar
  56. 56.
    Lee KY, Blaker JJ, Bismarck A (2009) Compos Sci Technol 69:2724CrossRefGoogle Scholar
  57. 57.
    Pérez E, Famá L, Pardo SG, Abad MJ, Bernal C (2012) Compos Part B 43:2795CrossRefGoogle Scholar
  58. 58.
    Pukánszky B, Turcsányi B, Tϋdós F (1988) In: Ishida H (ed) Interfaces in polymer, ceramic and metal matrix composites. Elsevier, New York, p 467Google Scholar
  59. 59.
    Csikós A, Faludi G, Domján A, Renner K, Moczó J, Pukánszky B (2015) Eur Polym J 68:592CrossRefGoogle Scholar
  60. 60.
    Demién Z, Pukánszky B, Nagy J (1998) Composites A 29:33Google Scholar
  61. 61.
    Csizmadia R, Faludi G, Renner K, Móczó J, Pukánszky B (2013) Composites A 53:46CrossRefGoogle Scholar
  62. 62.
    Faludi G, Dora G, Imre B, Renner K, Moczó J, Pukánszky B (2014) J Appl Polym Sci 131:39902CrossRefGoogle Scholar
  63. 63.
    Kiss A, Fekete E, Pukánszky B (2007) Compos Sci Technol 67:1574CrossRefGoogle Scholar
  64. 64.
    Gårdebjer S, Larsson A, Löfgren C, Ström A (2014) J Appl Polym Sci 132:41219Google Scholar
  65. 65.
    Abdulkhani A, Hosseinzadeh J, Ashori A, Dadashi S, Takzare Z (2014) Polym Test 35:73CrossRefGoogle Scholar
  66. 66.
    Almasi H, Ghanbarzadeh B, Dehghannya J, Entezami AA, Asl AK (2015) Food Packag Shelf Life 5:21CrossRefGoogle Scholar
  67. 67.
    Song Z, Xiao H, Zhao Y (2014) Carbohydr Polym 111:442PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jhon Alejandro Ávila Ramírez
    • 1
    • 2
    • 3
  • Jimena Bovi
    • 2
    • 3
    • 4
  • Celina Bernal
    • 3
    • 4
  • María Inés Errea
    • 1
  • María Laura Foresti
    • 2
    • 3
    Email author
  1. 1.Centro de Ingeniería del Medio Ambiente (CIMA), Instituto Tecnológico de Buenos Aires (ITBA)Buenos AiresArgentina
  2. 2.Grupo de Biotecnología y Materiales Biobasados, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Facultad de IngenieríaUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  4. 4.Grupo de Propiedades Mecánicas y Fractura, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Facultad de IngenieríaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations