Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 12, pp 2956–2962 | Cite as

Chemical Recycling of Polyethlylene Terephthalate by Glycolysis Using Deep Eutectic Solvents

  • Emine SertEmail author
  • Esra Yılmaz
  • Ferhan Sami Atalay
Original paper
  • 131 Downloads

Abstract

In this study, the glycolysis of polyethylene terephthalate was studied in presence of deep eutectic solvents as catalyst. In the glycolysis of PET, five different deep eutectic solvents were synthesized using different hydrogen bond donors and acceptors. Among the synthesized DESs, the most efficient catalyst was found to be DES formed by potassium carbonate and ethylene glycol. Glycolysis reaction was performed between PET and ethylene glycol. The effects of process parameters such as temperature, ratio of EG/PET and ratio of DES/PET were examined. The maximum yield for monomer product, bis(2-hydroxyethyl) terephthalate was observed as 88% at the reaction temperature of 180 °C, ethylene glycol/deep eutectic solvent ratio of 15 and deep eutectic solvent/polyethylene terephthalate ratio of 6.

Keywords

PET Glycolysis BHET Deep eutectic solvent 

Notes

Acknowledgements

This study was supported by Ege University 18MÜH025 scientific research project.

References

  1. 1.
    Zhu M, Li Z, Wang Q, Zhou X, Lu X (2012) Characterization of solid acid catalysts and their reactivity in the glycolysis of poly(ethylene terephthalate). Ind Eng Chem Res 51(36):11659–11666CrossRefGoogle Scholar
  2. 2.
    Imran M, Kim BK, Han M, Cho BG, Kim DH (2010) Sub-and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET). Polym Degrad Stab 95(9):1685–1693CrossRefGoogle Scholar
  3. 3.
    Grigore M (2017) Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling 2(4):24CrossRefGoogle Scholar
  4. 4.
    Ragaert K, Delva L, Van Geem K (2017) Mechanical and chemical recycling of solid plastic waste. Waste Manage 69:24–58CrossRefGoogle Scholar
  5. 5.
    Raheem AB, Noor ZZ, Hassan A, Abd Hamid MK, Samsudin SA, Sabeen AH (2019) Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: a review. J Clean Prod 225:1052–1064CrossRefGoogle Scholar
  6. 6.
    Wang Q, Yao X, Geng Y, Zhou Q, Lu X, Zhang S (2015) Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene terephthalate)(PET). Green Chem 17(4):2473–2479CrossRefGoogle Scholar
  7. 7.
    Goje AS (2005) Recycling of waste poly(ethylene terephthalate) with naphthalene and neutral water. Polym Plast Technol Eng. 44(8–9):1643–1655Google Scholar
  8. 8.
    Genta M, Iwaya T, Sasaki M, Goto M, Hirose T (2005) Depolymerization mechanism of poly(ethylene terephthalate) in supercritical methanol. Ind Eng Chem Res 44(11):3894–3900CrossRefGoogle Scholar
  9. 9.
    Shukla SR, Harad AM (2006) Aminolysis of polyethylene terephthalate waste. Polym Degrad Stab 91(8):1850–1854CrossRefGoogle Scholar
  10. 10.
    Jain A, Soni RK (2007) Spectroscopic investigation of end products obtained by ammonolysis of poly (ethylene terephthalate) waste in the presence of zinc acetate as a catalyst. J Polym Res 14(6):475–481CrossRefGoogle Scholar
  11. 11.
    López-Fonseca R, Duque-Ingunza I, de Rivas B, Flores-Giraldo L, Gutiérrez-Ortiz JI (2011) Kinetics of catalytic glycolysis of PET wastes with sodium carbonate. Chem Eng J 168(1):312–320CrossRefGoogle Scholar
  12. 12.
    Troev K, Grancharov G, Tsevi R, Gitsov I (2003) A novel catalyst for the glycolysis of poly(ethylene terephthalate). J Appl Polym Sci 90(8):2301–2301Google Scholar
  13. 13.
    Viana ME, Riul A, Carvalho GM, Rubira AF, Muniz EC (2011) Chemical recycling of PET by catalyzed glycolysis: kinetics of the heterogeneous reaction. Chem. Eng. J. 173(1):210–219CrossRefGoogle Scholar
  14. 14.
    Sangalang A, Bartolome L, Kim DH (2015) Generalized kinetic analysis of heterogeneous PET glycolysis: nucleation-controlled depolymerization. Polym Degrad Stab 115:45–53CrossRefGoogle Scholar
  15. 15.
    Ghaemy M, Mossaddegh K (2005) Depolymerisation of poly(ethylene terephthalate) fibre wastes using ethylene glycol. Polym Degrad Stab 90(3):570–576CrossRefGoogle Scholar
  16. 16.
    Yoshioka T, Handa T, Grause G, Lei Z, Inomata H, Mizoguchi T (2005) Effects of metal oxides on the pyrolysis of poly(ethylene terephthalate). J Anal Appl Pyrolysis 73(1):139–144CrossRefGoogle Scholar
  17. 17.
    Yue QF, Wang CX, Zhang LN, Ni Y, Jin YX (2011) Glycolysis of poly(ethylene terephthalate) (PET) using basic ionic liquids as catalysts. Polym Degrad Stab 96(4):399–403CrossRefGoogle Scholar
  18. 18.
    Yue QF, Xiao LF, Zhang ML, Bai XF (2013) The glycolysis of poly(ethylene terephthalate) waste: Lewis acidic ionic liquids as high efficient catalysts. Polymers (Basel) 5(4):1258–1271CrossRefGoogle Scholar
  19. 19.
    Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep Eutectic Solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J Am Chem Soc 126(29):9142–9147CrossRefGoogle Scholar
  20. 20.
    Yusof R, Abdulmalek E, Sirat K, Rahman MBA (2014) Tetrabutylammonium bromide (TBABr)-based deep eutectic solvents (DESs) and their physical properties. Molecules 19(6):8011–8026CrossRefGoogle Scholar
  21. 21.
    Musale RM, Shukla SR (2016) Deep eutectic solvent as effective catalyst for aminolysis of polyethylene terephthalate (PET) waste. Int J Plast Technol 20(1):106–120CrossRefGoogle Scholar
  22. 22.
    Mjalli FS, Naser J, Jibril B, Al-Hatmi SS, Gano ZS (2014) Ionic liquids analogues based on potassium carbonate. Thermochim Acta 575:135–143CrossRefGoogle Scholar
  23. 23.
    Hayyan M, Abo-Hamad A, AlSaadi MAH, Hashim MA (2015) Functionalization of graphene using deep eutectic solvents. Nanoscale Res Lett 10(1):324CrossRefGoogle Scholar
  24. 24.
    Troter DZ, Todorović ZB, Đokić-Stojanović DR, Veselinović LM, Zdujić MV, Veljković VB (2018) Choline chloride-based deep eutectic solvents in CaO-catalyzed ethanolysis of expired sunflower oil. J Mol Liq 266:557–567CrossRefGoogle Scholar
  25. 25.
    Chemat F, Anjum H, Shariff AM, Kumar P, Murugesan T (2016) Thermal and physical properties of (choline chloride + urea + l-arginine) deep eutectic solvents. J Mol Liq 218:301–308CrossRefGoogle Scholar
  26. 26.
    Troter DZ et al (2017) The physicochemical and thermodynamic properties of the choline chloride-based deep eutectic solvents. J Serbian Chem Soc 82(9):1039–1052CrossRefGoogle Scholar
  27. 27.
    Harifi-Mood AR, Buchner R (2017) Density, viscosity, and conductivity of choline chloride + ethylene glycol as a deep eutectic solvent and its binary mixtures with dimethyl sulfoxide. J Mol Liq 225:689–695CrossRefGoogle Scholar
  28. 28.
    Yadav A, Trivedi S, Rai R, Pandey S (2014) Densities and dynamic viscosities of (choline chloride+glycerol) deep eutectic solvent and its aqueous mixtures in the temperature range (283.15-363.15)K. Fluid Phase Equilib 367:135–142CrossRefGoogle Scholar
  29. 29.
    Khoonkari M, Haghighi AH, Sefidbakht Y, Shekoohi K, Ghaderian A (2015) Chemical recycling of PET wastes with different catalysts. Int J Polym Sci  https://doi.org/10.1155/2015/124524 CrossRefGoogle Scholar
  30. 30.
    Al-Sabagh AM et al (2014) Glycolysis of poly(ethylene terephthalate) catalyzed by the Lewis base ionic liquid [Bmim][OAc]. Ind Eng Chem Res 53(48):18443–18451CrossRefGoogle Scholar
  31. 31.
    Eshaq G, Elmetwally AE (2016) (Mg-Zn)-Al layered double hydroxide as a regenerable catalyst for the catalytic glycolysis of polyethylene terephthalate. J Mol Liq 214:1–6CrossRefGoogle Scholar
  32. 32.
    Yunita I, Putisompon S, Chumkaeo P, Poonsawat T, Somsook E (2019) Effective catalysts derived from waste ostrich eggshells for glycolysis of post-consumer PET bottles. Chem Pap 73(6):1547–1560CrossRefGoogle Scholar
  33. 33.
    Chen F, Zhou Q, Bu R, Yang F, Li W (2015) Kinetics of poly(ethylene terephthalate) fiber glycolysis in ethylene glycol. Fibers Polym 16(6):1213–1219CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringEge UniversityİzmirTurkey

Personalised recommendations