Journal of Polymers and the Environment

, Volume 28, Issue 1, pp 200–210 | Cite as

Removal of Methylene Blue from Water by Copper Alginate/Activated Carbon Aerogel: Equilibrium, Kinetic, and Thermodynamic Studies

  • Yuqi Wang
  • Yanhui LiEmail author
  • Xiaoping Zhang
  • Heng Zheng
Original paper


Activated carbon adsorption method was the most commonly used in the flied of the sewerage treatment due to large adsorption capacity, high adsorption efficiency, convenient operation and high regeneration rate. Despite this, the poor aqueous dispersion has a potential to cause loss of the adsorbent and affect water quality. The dispersion state of the activated carbons can be controlled effectively by aerogel. In this paper, copper alginate/activated carbon (CA/AC) aerogel was prepared by using the ionic gelation method. The CA/AC aerogel was characterized by scanning electron microscope (SEM), Fourier Transform infrared spectroscopy (FTIR) and Brunauer–Emmett–Teller (BET) surface area. Methylene blue (MB) was served as the adsorbate. The effect of adsorbent dose, contact time, initial MB concentration and temperature was studied systematically on adsorption performance of CA/AC. Testing results showed that CA/AC aerogel has high BET surface area of 319.64 m2/g and high adsorption capacity of 446.43 mg/g at 303 K. The equilibrium of methylene blue removal process by CA/AC aerogel were well described by the Langmuir isotherm model and Freundlich isotherm model. The results of the thermodynamic investigations indicated that the adsorption reactions were spontaneous, exothermic and the adsorption kinetics of methylene blue on CA/AC aerogel was best fitted to the pseudo-second-order kinetic model.


Copper alginate/activated carbon Aerogel Adsorption Methylene blue 



We appreciate the financial support from the Qingdao Postdoctoral Science Foundation, National Natural Science Foundation of China (Grant No. 51672140), Natural Science Foundation of Shandong Province (Grant No. ZR2015EM038) and Taishan Scholar Program of Shandong Province (Grant No. 201511029)


  1. 1.
    Sun J, Sun S, Wang G, Qiao L (2007) Dyes Pigm 74:647CrossRefGoogle Scholar
  2. 2.
    El-Sheekh MM, Gharieb MM, Abou-El-Souod GW (2009) Int Biodeterior Biodegrad 63:69Google Scholar
  3. 3.
    Pablo CI, Fabiola M, Carlos J, Justo L, Rodrigo MA (2006) Environ Sci Technol 40:6418CrossRefGoogle Scholar
  4. 4.
    Salem IA, El-Maazawi MS (2000) Chemosphere 41:1173CrossRefGoogle Scholar
  5. 5.
    Slokar YM, Marechal ML (1998) Dyes Pigm 37:335CrossRefGoogle Scholar
  6. 6.
    Hassan AF, Abdelmohsen AM, Fouda MM (2014) Carbohydr Polym 102:192CrossRefGoogle Scholar
  7. 7.
    Wang Y, Li Y, Li H, Zheng H, Du Q (1342l) J Polym Environ 27:1342lCrossRefGoogle Scholar
  8. 8.
    Li Y, Du Q, Liu T, Sun J, Wang Y, Wu S, Wang Z, Xia Y, Xia L (2013) Carbohydr Polym 95:501CrossRefGoogle Scholar
  9. 9.
    Sarmento B, Martins S, Ribeiro A, Veiga F, Neufeld R, Ferreira D (2006) Int J Pept Res Ther 12:131CrossRefGoogle Scholar
  10. 10.
    Nasrullah A, Bhat AH, Naeem A, Isa MH, Danish M (2018) Int J Biol Macromol 107:1792CrossRefGoogle Scholar
  11. 11.
    Li Y, Liu F, Bing X, Du Q, Pan Z, Wang D, Wang Z, Xia Y (2010) J Hazard Mater 177:876CrossRefGoogle Scholar
  12. 12.
    Mahmoodi NM, Hayati B, Arami M, Bahrami H (2011) Desalination 275:93CrossRefGoogle Scholar
  13. 13.
    Rocher V, Siaugue JM, Cabuil V, Bee A (2008) Water Res 42:1290CrossRefGoogle Scholar
  14. 14.
    Yan W, Han GT, Ying G, Yuan MZ, Yan ZX, Chang QY, Da WW (2011) Adv Mater Res 152–153:1351CrossRefGoogle Scholar
  15. 15.
    Zhou K, Li Y, Li Q, Du Q, Wang D, Sui K, Wang C, Li H, Xia Y (2018) J Polym Environ 26:3362CrossRefGoogle Scholar
  16. 16.
    Nasrullah A, Saad B, Bhat AH, Khan AS, Danish M, Isa MH, Naeem A (2019) J Clean Prod 211:1190CrossRefGoogle Scholar
  17. 17.
    Duranoğlu D (2012) Energy Sources 34:12Google Scholar
  18. 18.
    East M (2016) Pure Appl Chem 38:25Google Scholar
  19. 19.
    Oladipo AA, Gazi M (2014) J Water Process Eng 2:43CrossRefGoogle Scholar
  20. 20.
    Vadivelan V, Kumar KV (2005) J Colloid Interface Sci 286:90CrossRefGoogle Scholar
  21. 21.
    Debnath S, Ghosh UC (2009) Chem Eng J 152:480CrossRefGoogle Scholar
  22. 22.
    Hameed BH, Ahmad AA (2009) J Hazard Mater 164:870CrossRefGoogle Scholar
  23. 23.
    Li L, Fan L, Sun M, Qiu H, Li X, Duan H, Luo C (2013) Int J Biol Macromol 58:169CrossRefGoogle Scholar
  24. 24.
    Gupta VK, Pathania D, Sharma S, Agarwal S, Singh P (2013) J Mol Liq 177:343CrossRefGoogle Scholar
  25. 25.
    Zamani S, Tabrizi NS (2015) Res Chem Intermed 41:7945CrossRefGoogle Scholar
  26. 26.
    He B, Zheng T, Wang F, Lu L (2016) Chin J Environ Eng 10:3005Google Scholar
  27. 27.
    Li Y, Du Q, Liu T, Peng X, Wang J, Sun J, Wang Y, Wu S, Wang Z, Xia Y (2013) Chem Eng Res Des 91:361CrossRefGoogle Scholar
  28. 28.
    Dural MU, Cavas L, Papageorgiou SK, Katsaros FK (2011) Chem Eng J 168:77CrossRefGoogle Scholar
  29. 29.
    Doğan M, Alkan M, Demirbaş Ö, Özdemir Y, Özmetin C (2006) Chem Eng J 124:89CrossRefGoogle Scholar
  30. 30.
    Yuh-Shan H (2006) Water Res 40:119CrossRefGoogle Scholar
  31. 31.
    Duman O, Ayranci E (2010) J Hazard Mater 174:359CrossRefGoogle Scholar
  32. 32.
    Yasar N, Emine M (2009) Bioresour Technol 99:2375Google Scholar
  33. 33.
    Li Y, Zhang P, Du Q, Peng X, Liu T, Wang Z, Xia Y, Zhang W, Wang K, Zhu H (2011) J Colloid Interface Sci 363:348CrossRefGoogle Scholar
  34. 34.
    Purkait MK, Maiti A, Dasgupta S, De S (2007) J Hazard Mater 145:287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yuqi Wang
    • 1
  • Yanhui Li
    • 1
    • 2
    Email author
  • Xiaoping Zhang
    • 2
  • Heng Zheng
    • 2
  1. 1.College of Mechanical and Electrical EngineeringQingdao UniversityQingdaoChina
  2. 2.Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key LaboratoryQingdao UniversityQingdaoChina

Personalised recommendations