Journal of Polymers and the Environment

, Volume 27, Issue 12, pp 2915–2924 | Cite as

Study of the Interaction Between Oligomerised Recycled Poly(ethylene terephtalate) and Concrete Waste

  • Sibele Piedade Cestari
  • Gerson Alberto Valencia Albitres
  • Homero Modesto Pires
  • Daniela de França da Silva Freitas
  • Luis Claudio MendesEmail author
Original paper


Aiming to assess the feasibility of a one-step processing, comprising simultaneously the mixing of polymer/filler and the modification of the particle surface, we prepared composites of recycled poly(ethylene terephtalate) and micronized concrete waste particles, using an oligomerising agent. The goal was to partially oligomerise the recycled polymer and foster the chemical modification of the concrete particles surface with these oligomers, to improve the dispersion and adhesion of the filler in the polymeric matrix. The composites were evaluated by thermogravimetry/derivative thermogravimetry, differential scanning calorimetry, Fourier transform infrared spectroscopy, wide angle X-ray diffractometry and rheological measurements. There was an improvement in the crystallizing effect of the filler in the composites with oligomerised polymer. We noticed a trend of reaction between the citric acid and the poly(ethylene terephtalate) oligomer in the Fourier transform infrared spectroscopy results. From the wide angle X-ray diffractometry analysis we assessed that the presence of the filler had more influence in the crystallinity of the recycled poly(ethylene terephtalate) than the degradation caused by the citric acid. The rheological measurements showed an increased cohesion of the internal structure of the materials in the oligomerised samples. We conclude that there is a pathway to obtain composites of recycled poly(ethylene terephtalate) and surface-modified concrete waste particles in a single step, by partially oligomerising the polymer in the molten processing.


Poly(ethylene terephthalate) Compatibilization Recycling Concrete waste 



The authors thank the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), the Conselho Nacional Desenvolvimento Científico e Tecnológico (CNPq) the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), for supporting this research.


  1. 1.
    Lima AC, Monteiro SN, Satyanarayana KG (2012) Recycled polyethylene composites reinforced with jute fabric from sackcloth: part I-preparation and preliminary assessment. J Polym Environ 20(1):245–253CrossRefGoogle Scholar
  2. 2.
    Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31(6):576–602. CrossRefGoogle Scholar
  3. 3.
    Antink R, Garrigan C, Bonetti M, Westaway R (2012) Greening the supply chain. UNEP-SBCI, ParisGoogle Scholar
  4. 4.
  5. 5.
    Roodman DM, Lenssen N, Peterson JA (1995) A building revolution: how ecology and health concerns are transforming construction. Worldwatch Institute, Washington, DCGoogle Scholar
  6. 6.
    Horvath A (2004) Construction materials and the environment. Annu Rev Environ Resour 29:181–204CrossRefGoogle Scholar
  7. 7.
    Ramos FJHTV, Mendes LC, Cestari SP (2015) Organically modified concrete waste with oleic acid preparation and characterization. J Therm Anal Calorim 119(3):1895–1904. CrossRefGoogle Scholar
  8. 8.
    Ramachandran V (2001) Concrete science. In: Ramachandran V, Beaudoin JJ (eds) Handbook of analytical techniques in concrete. William Andrew Publishing/Noyes Publications, New York, pp 1–62Google Scholar
  9. 9.
    Hime WG (2001) Chemical methods of analysis of concrete. In: Ramachandran V, Beaudoin JJ (eds) Handbook of analytical techniques in concrete. William Andrew Publishing/Noyes Publications, New York, pp 105–126CrossRefGoogle Scholar
  10. 10.
    Awaja F, Pavel D (2005) Recycling of PET. Eur Polym J 41(7):1453–1477CrossRefGoogle Scholar
  11. 11.
    Coelho TM, Castro R, Gobbo J Jr (2011) PET containers in Brazil: opportunities and challenges of a logistics model for post-consumer waste recycling. Resour Conserv Recycl 55(3):291–299CrossRefGoogle Scholar
  12. 12.
    Welle F (2011) Twenty years of PET bottle to bottle recycling—an overview. Resour Conserv Recycl 55(11):865–875CrossRefGoogle Scholar
  13. 13.
    Khoonkari M, Haghighi AH, Sefidbakht Y, Shekoohi K, Ghaderian A (2015) Chemical recycling of PET wastes with different catalysts. Int J Polym Sci 2015:11CrossRefGoogle Scholar
  14. 14.
    La Mantia F, Botta L, Morreale M, Scaffaro R (2012) Effect of small amounts of poly (lactic acid) on the recycling of poly (ethylene terephthalate) bottles. Polym Degrad Stab 97(1):21–24Google Scholar
  15. 15.
    Avila AF, Duarte MV (2003) A mechanical analysis on recycled PET/HDPE composites. Polym Degrad Stab 80(2):373–382CrossRefGoogle Scholar
  16. 16.
    Kráčalík M, Studenovský M, Mikešová J, Sikora A, Thomann R, Friedrich C, Fortelný I, Šimoník J (2007) Recycled PET nanocomposites improved by silanization of organoclays. J Appl Polym Sci 106(2):926–937CrossRefGoogle Scholar
  17. 17.
    Ronkay F, Czigány T (2006) Development of composites with recycled PET matrix. Polym Adv Technol 17(9–10):830–834CrossRefGoogle Scholar
  18. 18.
    Corradini E, Ito EN, Marconcini JM, Rios CT, Agnelli JA, Mattoso LH (2009) Interfacial behavior of composites of recycled poly (ethyelene terephthalate) and sugarcane bagasse fiber. Polym Testing 28(2):183–187CrossRefGoogle Scholar
  19. 19.
    de Moura Giraldi A, de Jesus RC, Mei LI (2005) The influence of extrusion variables on the interfacial adhesion and mechanical properties of recycled PET composites. J Mater Process Technol 162:90–95Google Scholar
  20. 20.
    Baliga S, Wong WT (1989) Depolymerization of poly (ethylene terephthalate) recycled from post-consumer soft-drink bottles. J Polym Sci, Part A: Polym Chem 27(6):2071–2082CrossRefGoogle Scholar
  21. 21.
    Kim SB, Yi NH, Kim HY, Kim J-HJ, Song Y-C (2010) Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement Concr Compos 32(3):232–240CrossRefGoogle Scholar
  22. 22.
    Jo B-W, Park S-K, Park J-C (2008) Mechanical properties of polymer concrete made with recycled PET and recycled concrete aggregates. Constr Build Mater 22(12):2281–2291CrossRefGoogle Scholar
  23. 23.
    Won J-P, Jang C-I, Lee S-W, Lee S-J, Kim H-Y (2010) Long-term performance of recycled PET fibre-reinforced cement composites. Constr Build Mater 24(5):660–665CrossRefGoogle Scholar
  24. 24.
    D3418 A (2015) Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry, Vol D3418. ASTM International, West ConshohockenGoogle Scholar
  25. 25.
    Mendes LC, Mallet IA, Cestari SP, Dias FGdA, Pereira PSdC (2014) Solid state polymerization of pet/pc extruded blend: effect of reaction temperature on thermal, morphological and viscosity properties. Polímeros 24(4):422–427CrossRefGoogle Scholar
  26. 26.
    Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978CrossRefGoogle Scholar
  27. 27.
    Elyamany HE, Elmoaty AEMA, Mohamed B (2014) Effect of filler types on physical, mechanical and microstructure of self compacting concrete and flow-able concrete. Alex Eng J 53(2):295–307CrossRefGoogle Scholar
  28. 28.
    Weber S, Reinhardt HW (1997) A new generation of high performance concrete: concrete with autogenous curing. Adv Cem Based Mater 6(2):59–68CrossRefGoogle Scholar
  29. 29.
    Ajji A, Cole K, Dumoulin M, Brisson J (1995) Amorphous orientation of poly (ethylene terephthalate) by X-ray diffraction in combination with Fourier transform infra-red spectroscopy. Polymer 36(21):4023–4030CrossRefGoogle Scholar
  30. 30.
    Nunes RAX, Costa VC, Calado VMdA, Branco JRT (2009) Wear, friction, and microhardness of a thermal sprayed PET: poly (ethylene terephthalate) coating. Materials Research 12(2):121–125CrossRefGoogle Scholar
  31. 31.
    Bhat N, Deshmukh R (2002) X-ray crystallographic studies of polymeric materials. NISCAIR-CSIR, New DelhiGoogle Scholar
  32. 32.
    Strain I, Wu Q, Pourrahimi AM, Hedenqvist MS, Olsson RT, Andersson RL (2015) Electrospinning of recycled PET to generate tough mesomorphic fibre membranes for smoke filtration. J Mater Chem A 3(4):1632–1640CrossRefGoogle Scholar
  33. 33.
    Murthy N, Correale S, Minor H (1991) Structure of the amorphous phase in crystallizable polymers: poly (ethylene terephthalate). Macromolecules 24(5):1185–1189CrossRefGoogle Scholar
  34. 34.
    Gok A (2016) Degradation pathway models of poly (ethylene-terephthalate) under accelerated weathering exposures. Case Western Reserve University, ClevelandGoogle Scholar
  35. 35.
    Khonakdar HA, Jafari SH, Mirzadeh S, Kalaee MR, Zare D, Saeb MR (2013) Rheology-morphology correlation in PET/PP blends: influence of type of compatibilizer. J Vinyl Add Technol 19(1):25–30CrossRefGoogle Scholar
  36. 36.
    Kráčalík M, Pospíšil L, Šlouf M, Mikešová J, Sikora A, Šimoník J, Fortelný I (2008) Recycled poly (ethylene terephthalate) reinforced with basalt fibres: rheology, structure, and utility properties. Polym Compos 29(4):437–442CrossRefGoogle Scholar
  37. 37.
    Rezaeian I, Jafari S, Zahedi P, Nouri S (2009) An investigation on the rheology, morphology, thermal and mechanical properties of recycled poly (ethylene terephthalate) reinforced with modified short glass fibers. Polym Compos 30(7):993–999CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sibele Piedade Cestari
    • 1
  • Gerson Alberto Valencia Albitres
    • 1
  • Homero Modesto Pires
    • 1
  • Daniela de França da Silva Freitas
    • 1
  • Luis Claudio Mendes
    • 1
    Email author
  1. 1.Instituto de Macromoléculas Professora Eloisa Mano (IMA)Universidade Federal Do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations