Crystallization and Rheological Properties of the Eco-friendly Composites Based on Poly (lactic acid) and Precipitated Barium Sulfate

  • Ji-nian YangEmail author
  • Shi-bin NieEmail author
  • Yu-hui Qiao
  • Yue Liu
  • Zhen-yu Li
  • Guo-jun Cheng
Original Paper


The environmental-friendly poly (lactic acid) (PLA) composites were fabricated by incorporating precipitated barium sulfate (BaSO4), and then the crystallization behaviors and rheological properties were investigated in detail. Results show that the added inorganic filler enhances the crystallization capacity, promoting the crystallization happened in advance and achieving increased crystallinity for the composites. Such promotion effect is further demonstrated by the calculated kinetic parameters including half-time of crystallization, F(T), activation energy and nucleation activity. Rheology tests reveal that pure PLA exhibits a typical linear viscoelastic feature while the shear-thinning behavior of the composites becomes manifest increasingly. However, the complex viscosity, storage modulus and loss modulus for the composites are all increased along with added inorganic filler.


Poly(lactic acid) Barium sulfate Crystallization kinetics Spherulite morphology Rheological property 



The work was supported by the National Natural Science Foundation of China (No. 51775001), Anhui Provincial Natural Science Foundation (1908085J20) and the Leading Talents Project in Colleges and Universities of Anhui Province.

Supplementary material

10924_2019_1557_MOESM1_ESM.docx (451 kb)
Supplementary file1 (DOCX 451 kb)


  1. 1.
    Momani BL (2009) Assessment of the impacts of bioplastics: energy usage, fossil fuel usage, pollution, health effects, effects on the food supply, and economic effects compared to petroleum based plastics. Worcester Polytechnic Institute, pp 1–58Google Scholar
  2. 2.
    Gross RA, Bhanu K (2002) Biodegradable polymers for the environment. Science 297(5582):803–807CrossRefGoogle Scholar
  3. 3.
    Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AWG, McGonigle D, Russell AE (2004) Lost at sea: where is all the plastic? Science 304(5672):838–838CrossRefGoogle Scholar
  4. 4.
    Harrison JP, Ojeda JJ, Romero-Gonzalez ME (2012) The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments. Sci Total Environ 416:455–463CrossRefGoogle Scholar
  5. 5.
    Collard F, Gilbert B, Eppe G, Parmentier E, Das K (2015) Detection of anthropogenic particles in fish stomachs: an isolation method adapted to identification by Raman spectroscopy. Arch Environ Contam Toxicol 69(3):331–339CrossRefGoogle Scholar
  6. 6.
    Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9(2):63–84CrossRefGoogle Scholar
  7. 7.
    Murariu M, Dubois P (2016) PLA composites: from production to properties. Adv Drug Deliv Rev 107:17–46CrossRefGoogle Scholar
  8. 8.
    Kale G, Auras R, Singh SP, Narayan R (2007) Biodegradability of polylactide bottles in real and simulated composting conditions. Polymer Test 26(8):1049–1061CrossRefGoogle Scholar
  9. 9.
    Madhavan Nampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501CrossRefGoogle Scholar
  10. 10.
    Raquez J-M, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10–11):1504–1542CrossRefGoogle Scholar
  11. 11.
    Nofar M, Park CB (2014) Poly (lactic acid) foaming. Prog Polym Sci 39(10):1721–1741CrossRefGoogle Scholar
  12. 12.
    Chow WS, Teoh EL, Karger-Kocsis J (2018) Flame retarded poly(lactic acid): a review. Express Polym Lett 12(5):396–417CrossRefGoogle Scholar
  13. 13.
    Tawiah B, Yu B, Fei B (2018) Advances in flame retardant poly(lactic acid). Polymers 10(8):876CrossRefGoogle Scholar
  14. 14.
    Arrieta MP, López J, Ferrándiz S, Peltzer MA (2013) Characterization of PLA–limonene blends for food packaging applications. Polymer Test 32(4):760–768CrossRefGoogle Scholar
  15. 15.
    Anderson KS, Schreck KM, Hillmyer MA (2008) Toughening polylactide Polym Rev 48(1):85–108CrossRefGoogle Scholar
  16. 16.
    Jiang L, Wolcott MP, Zhang J (2006) Study of biodegradable polylactide/poly (butylene adipate-co-terephthalate) blends. Biomacromol 7(1):199–207CrossRefGoogle Scholar
  17. 17.
    Lu J, Qiu Z, Yang W (2007) Fully biodegradable blends of poly (l-lactide) and poly (ethylene succinate): miscibility, crystallization, and mechanical properties. Polymer 48(14):4196–4204CrossRefGoogle Scholar
  18. 18.
    Li Y, Shimizu H (2007) Toughening of polylactide by melt blending with a biodegradable poly (ether) urethane elastomer. Macromol Biosci 7(7):921–928CrossRefGoogle Scholar
  19. 19.
    Oyama HT (2009) Super-tough poly (lactic acid) materials: reactive blending with ethylene copolymer. Polymer 50(3):747–751CrossRefGoogle Scholar
  20. 20.
    Chen C-C, Chueh J-Y, Tseng H, Huang H-M, Lee S-Y (2003) Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24(7):1167–1173CrossRefGoogle Scholar
  21. 21.
    Zhang D, Kandadai MA, Cech J, Roth S, Curran SA (2006) Poly (l-lactide) (PLLA)/multiwalled carbon nanotube (MWCNT) composite: characterization and biocompatibility evaluation. J Phys Chem B 110(26):12910–12915CrossRefGoogle Scholar
  22. 22.
    Fu Q, Wang G, Shen J (1993) Polyethylene toughened by CaCO3 particle: brittle-ductile transition of CaCO3-toughened HDPE. J Appl Polym Sci 49(4):673–677CrossRefGoogle Scholar
  23. 23.
    Hong Z, Zhang P, He C, Qiu X, Liu A, Chen L, Chen X, Jing X (2005) Nano-composite of poly(l-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials 26(32):6296–6304CrossRefGoogle Scholar
  24. 24.
    Lei X-X, Lu H, Lu L, Xu H-Q, Zhou Y-G, Zou J (2019) Improving the thermal and mechanical properties of poly (l-lactide) by forming nanocomposites with an in situ ring-opening intermediate of poly (l-lactide) and polyhedral oligomeric silsesquioxane. Nanomaterials 9(5):748CrossRefGoogle Scholar
  25. 25.
    Wu L, Cao D, Huang Y, Li B-G (2008) Poly(l-lactic acid)/SiO2 nanocomposites via in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: preparation and characterization. Polymer 49(3):742–748CrossRefGoogle Scholar
  26. 26.
    Katiyar V, Nanavati H (2011) In situ synthesis of high molecular weight poly (l-lactic acid) clay nanocomposites. Polym Eng Sci 51(10):2066–2077CrossRefGoogle Scholar
  27. 27.
    Luo Y-B, Wang X-L, Xu D-Y, Wang Y-Z (2009) Preparation and characterization of poly (lactic acid)-grafted TiO2 nanoparticles with improved dispersions. Appl Surf Sci 255(15):6795–6801CrossRefGoogle Scholar
  28. 28.
    Vilay V, Mariatti M, Ahmad Z, Pasomsouk K, Todo M (2009) Characterization of the mechanical and thermal properties and morphological behavior of biodegradable poly (l-lactide)/poly (ε-caprolactone) and poly (l-lactide)/poly (butylene succinate-co-l-lactate) polymeric blends. J Appl Polym Sci 114(3):1784–1792CrossRefGoogle Scholar
  29. 29.
    Li Y, Shimizu H (2009) Improvement in toughness of poly (l-lactide) (PLLA) through reactive blending with acrylonitrile–butadiene–styrene copolymer (ABS): morphology and properties. Eur Polym J 45(3):738–746CrossRefGoogle Scholar
  30. 30.
    Liang J, Duan D, Tang C, Tsui C, Chen D, Zhang S (2015) Mechanical properties and morphology of poly (l-lactic acid)/nano-CaCO3 composites. J Polym Environ 23(1):21–29CrossRefGoogle Scholar
  31. 31.
    Murariu M, Da Silva Ferreira A, Degée P, Alexandre M, Dubois P (2007) Polylactide compositions. Part 1: effect of filler content and size on mechanical properties of PLA/calcium sulfate composites. Polymer 48(9):2613–2618Google Scholar
  32. 32.
    Murariu M, Bonnaud L, Yoann P, Fontaine G, Bourbigot S, Dubois P (2010) New trends in polylactide (PLA)-based materials: “Green” PLA–calcium sulfate (nano)composites tailored with flame retardant properties. Polym Degrad Stab 95(3):374–381CrossRefGoogle Scholar
  33. 33.
    Shimpi NG, Mishra S (2013) Ultrasonic-assisted synthesis of nano-BaSO4 and its effect on thermal and cross-linking density of epoxy nanocomposites. J Reinf Plast Compos 32(13):947–954CrossRefGoogle Scholar
  34. 34.
    Hamad K, Kaseem M, Yang HW, Deri F, Ko YG (2015) Properties and medical applications of polylactic acid: a review. Express Polym Lett 9(5):435–455CrossRefGoogle Scholar
  35. 35.
    Hoekstra JWM, van den Beucken JJ, Leeuwenburgh SC, Bronkhorst EM, Meijer GJ, Jansen JA (2014) Tantalum oxide and barium sulfate as radiopacifiers in injectable calcium phosphate-poly (lactic-co-glycolic acid) cements for monitoring in vivo degradation. J Biomed Mater Res A 102(1):141–149CrossRefGoogle Scholar
  36. 36.
    Choi SY, Hur W, Kim BK, Shasteen C, Kim MH, Choi LM, Lee SH, Park CG, Park M, Min HS (2015) Bioabsorbable bone fixation plates for X-ray imaging diagnosis by a radiopaque layer of barium sulfate and poly (lactic-co-glycolic acid). J Biomed Mater Res B 103(3):596–607CrossRefGoogle Scholar
  37. 37.
    Meagher MJ, Leone B, Turnbull TL, Ross RD, Zhang Z, Roeder RK (2013) Dextran-encapsulated barium sulfate nanoparticles prepared for aqueous dispersion as an X-ray contrast agent. J Nanopart Res 15(12):2146CrossRefGoogle Scholar
  38. 38.
    Chen X, Wang L, Shi J, Shi H, Liu Y (2010) Effect of barium sulfate nanoparticles on mechanical properties and crystallization behaviour of HDPE. Polym Polym Compos 18(3):145–152Google Scholar
  39. 39.
    Yang J, Wang C, Shao K, Ding G, Tao Y, Zhu J (2015) Morphologies, mechanical properties and thermal stability of poly (lactic acid) toughened by precipitated barium sulfate. Russ J Phys Chem A 89(11):2092–2096CrossRefGoogle Scholar
  40. 40.
    Romero-Ibarra IC, Bonilla-Blancas E, Sánchez-Solís A, Manero O (2012) Influence of X-ray opaque BaSO4 nanoparticles on the mechanical, thermal and rheological properties of polyoxymethylene nanocomposites. J Polym Eng 32(4–5):319–326Google Scholar
  41. 41.
    Cao X, Zhang H, Chen M, Wang L (2014) Preparation, characterization, and properties of modified barium sulfate nanoparticles/polyethylene nanocomposites as T-shaped copper intrauterine devices. J Appl Polym Sci 131(12):40393CrossRefGoogle Scholar
  42. 42.
    Wang Z, Zhang F, Song N, Ni L (2008) The influence of barium sulfate on the mechanical properties of glass/epoxy resin composite. Polym Polym Compos 16(4):257–262Google Scholar
  43. 43.
    Shahzamani M, Rezaeian I, Loghmani M, Zahedi P, Rezaeian A (2012) Effects of BaSO4, CaCO3, kaolin and quartz fillers on mechanical, chemical and morphological properties of cast polyurethane. Plast Rubber Compos 41(6):263–269CrossRefGoogle Scholar
  44. 44.
    de Arenaza IM, Sadaba N, Larranaga A, Zuza E, Sarasua JR (2015) High toughness biodegradable radiopaque composites based on polylactide and barium sulphate. Eur Polym J 73:88–93CrossRefGoogle Scholar
  45. 45.
    Gao W, Zhou B, Ma X, Liu Y, Wang Z, Zhu Y (2011) Preparation and characterization of BaSO4/poly (ethylene terephthalate) nanocomposites. Colloids Surf A 385(1–3):181–187CrossRefGoogle Scholar
  46. 46.
    Yao C, Yang G (2009) Synthesis, thermal, and rheological properties of poly (trimethylene terephthalate)/BaSO4 nanocomposites. Polym Adv Technol 20(10):768–774CrossRefGoogle Scholar
  47. 47.
    Chen X, Wang L, Liu Y, Shi J, Shi H (2009) Nonisothermal crystallization kinetics of high-density polyethylene/barium sulfate nanocomposites. Polym Eng Sci 49(12):2342–2349CrossRefGoogle Scholar
  48. 48.
    Yang J-N, Xu Y-X, Nie S-B, Cheng G-J, Tao Y-L, Zhu J-B (2018) Morphological structure, impact toughness, thermal property and kinetic analysis on the cold crystallization of poly (lactic acid) bio-composites toughened by precipitated barium sulfate. Polym Degrad Stab 158:176–189CrossRefGoogle Scholar
  49. 49.
    Bai H, Xiu H, Gao J, Deng H, Zhang Q, Yang M, Fu Q (2012) Tailoring impact toughness of poly(l-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. ACS Appl Mater Interfaces 4(2):897–905CrossRefGoogle Scholar
  50. 50.
    Cai YH (2013) Effects of barium sulphate on thermal behaviour of poly(l-lactic acid). Asian J Chem 25(4):2170–2172Google Scholar
  51. 51.
    Li C, Dou Q (2014) Non-isothermal crystallization kinetics and spherulitic morphology of nucleated poly (lactic acid): effect of dilithium hexahydrophthalate as a novel nucleating agent. Thermochim Acta 594:31–38CrossRefGoogle Scholar
  52. 52.
    Li C, Dou Q (2015) Non-isothermal crystallization kinetics and spherulitic morphology of nucleated poly (lactic acid): effect of dilithium cis-4-cyclohexene-1, 2-dicarboxylate as a novel and efficient nucleating agent. Polym Adv Technol 26(4):376–384CrossRefGoogle Scholar
  53. 53.
    Wang H, Qiu Z (2011) Crystallization behaviors of biodegradable poly (l-lactic acid)/graphene oxide nanocomposites from the amorphous state. Thermochim Acta 526(1–2):229–236CrossRefGoogle Scholar
  54. 54.
    Hwang JJ, Huang SM, Liu HJ, Chu HC, Lin LH, Chung CS (2012) Crystallization kinetics of poly (l-lactic acid)/montmorillonite nanocomposites under isothermal crystallization condition. J Appl Polym Sci 124(3):2216–2226CrossRefGoogle Scholar
  55. 55.
    Su Z, Guo W, Liu Y, Li Q, Wu C (2009) Non-isothermal crystallization kinetics of poly (lactic acid)/modified carbon black composite. Polym Bull 62(5):629–642CrossRefGoogle Scholar
  56. 56.
    Xu J-Z, Zhang Z-J, Xu H, Chen J-B, Ran R, Li Z-M (2015) Highly enhanced crystallization kinetics of poly (l-lactic acid) by poly (ethylene glycol) grafted graphene oxide simultaneously as heterogeneous nucleation agent and chain mobility promoter. Macromolecules 48(14):4891–4900CrossRefGoogle Scholar
  57. 57.
    Vestena M, Gross IP, Müller CM, Pires AT (2016) Nanocomposite of poly (lactic acid)/cellulose nanocrystals: effect of CNC content on the polymer crystallization kinetics. J Braz Chem Soc 27(5):905–911Google Scholar
  58. 58.
    Xu T, Zhang A, Zhao Y, Han Z, Xue L (2015) Crystallization kinetics and morphology of biodegradable poly (lactic acid) with a hydrazide nucleating agent. Polym Test 45:101–106CrossRefGoogle Scholar
  59. 59.
    Zhou Y-G, Wu W-B, Lu G-Y, Zou J (2017) Isothermal and non-isothermal crystallization kinetics and predictive modeling in the solidification of poly (cyclohexylene dimethylene cyclohexanedicarboxylate) melt. J Elastomers Plast 49(2):132–156CrossRefGoogle Scholar
  60. 60.
    Meng H, Sui G, Fang P, Yang R (2008) Effects of acid- and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6. Polymer 49(2):610–620CrossRefGoogle Scholar
  61. 61.
    Wang H, Qiu Z (2012) Crystallization kinetics and morphology of biodegradable poly (l-lactic acid)/graphene oxide nanocomposites: influences of graphene oxide loading and crystallization temperature. Thermochim Acta 527:40–46CrossRefGoogle Scholar
  62. 62.
    Pan P, Liang Z, Zhu B, Dong T, Inoue Y (2009) Blending effects on polymorphic crystallization of poly (l-lactide). Macromolecules 42(9):3374–3380CrossRefGoogle Scholar
  63. 63.
    Park SD, Todo M, Arakawa K, Koganemaru M (2006) Effect of crystallinity and loading-rate on mode I fracture behavior of poly (lactic acid). Polymer 47(4):1357–1363CrossRefGoogle Scholar
  64. 64.
    Battegazzore D, Bocchini S, Frache A (2011) Crystallization kinetics of poly (lactic acid)–talc composites. Express Polym Lett 5(10):849–858CrossRefGoogle Scholar
  65. 65.
    Liu B, Du Z, Wang X, Xin F, Liu W (2015) Crystallization kinetics of chain extended poly (lactic acid)/clay nanocomposites. Polym Compos 36(11):2123–2134CrossRefGoogle Scholar
  66. 66.
    Fox Jr TG, Flory PJ (1950) Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phys 21(6):581–591Google Scholar
  67. 67.
    Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Biodegradation of poly(lactic acid) and its nanocomposites. Polym Degrad Stab 94(10):1646–1655CrossRefGoogle Scholar
  68. 68.
    Carrasco F, Gámez-Pérez J, Santana OO, Maspoch ML (2011) Processing of poly(lactic acid)/organomontmorillonite nanocomposites: microstructure, thermal stability and kinetics of the thermal decomposition. Chem Eng J 178:451–460CrossRefGoogle Scholar
  69. 69.
    Wang Y, Steinhoff B, Brinkmann C, Alig I (2008) In-line monitoring of the thermal degradation of poly (l-lactic acid) during melt extrusion by UV–vis spectroscopy. Polymer 49(5):1257–1265CrossRefGoogle Scholar
  70. 70.
    Avrami M (1939) Kinetics of phase change. I: general theory. J Chem Phys 7(12):1103–1112Google Scholar
  71. 71.
    Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer 19(10):1142–1144CrossRefGoogle Scholar
  72. 72.
    Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12(3):150–158CrossRefGoogle Scholar
  73. 73.
    Wu D, Wu L, Wu L, Xu B, Zhang Y, Zhang M (2007) Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci B 45(9):1100–1113CrossRefGoogle Scholar
  74. 74.
    Shi N, Dou Q (2015) Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/treated calcium carbonate composites. J Therm Anal Calorim 119(1):635–642CrossRefGoogle Scholar
  75. 75.
    Schmidt SC, Hillmyer MA (2001) Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J Polym Sci B 39(3):300–313CrossRefGoogle Scholar
  76. 76.
    Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone). Polym Eng Sci 37(3):568–575CrossRefGoogle Scholar
  77. 77.
    Li M, Hu D, Wang Y, Shen C (2010) Nonisothermal crystallization kinetics of poly (lactic acid) formulations comprising talc with poly (ethylene glycol). Polym Eng Sci 50(12):2298–2305CrossRefGoogle Scholar
  78. 78.
    Zhang Y, Deng B, Liu Q, Chang G (2013) Nonisothermal crystallization kinetics of poly (lactic acid)/nanosilica composites. J Macromol Sci B 52(2):334–343CrossRefGoogle Scholar
  79. 79.
    Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706CrossRefGoogle Scholar
  80. 80.
    Vyazovkin S 91997) Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem 18(3):393–402Google Scholar
  81. 81.
    Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci B 6(1):183–195Google Scholar
  82. 82.
    Dobreva A, Gutzow I (1993) Activity of substrates in the catalyzed nucleation of glass-forming melts. I Theory J Noncryst Solids 162(1):1–12Google Scholar
  83. 83.
    Dobreva A, Gutzow I (1993) Activity of substrates in the catalyzed nucleation of glass-forming melts. II Experimental evidence J Noncryst Solids 162(1):13–25CrossRefGoogle Scholar
  84. 84.
    Barnes HA (2003) A review of the rheology of filled viscoelastic systems. Rheol Rev 1–36Google Scholar
  85. 85.
    Markov AV (2008) Rheological behavior of high filled polymers. Influence of fillers. Mater Sci Eng Technol 39(3):227–233Google Scholar
  86. 86.
    Lai B, Ni X (2008) Rheological behavior and interaction of polycarbonate/barium sulfate composites. J Macromol Sci B 47(5):1028–1038CrossRefGoogle Scholar
  87. 87.
    Di Y, Iannace S, Maio ED, Nicolais L (2005) Poly (lactic acid)/organoclay nanocomposites: thermal, rheological properties and foam processing. J Polym Sci B 43(6):689–698CrossRefGoogle Scholar
  88. 88.
    Bhatia A, Gupta RK, Bhattacharya SN, Choi H (2009) An investigation of melt rheology and thermal stability of poly (lactic acid)/poly (butylene succinate) nanocomposites. J Appl Polym Sci 114(5):2837–2847CrossRefGoogle Scholar
  89. 89.
    Han CD, Jhon MS (1986) Correlations of the first normal stress difference with shear stress and of the storage modulus with loss modulus for homopolymers. J Appl Polym Sci 32(3):3809–3840CrossRefGoogle Scholar
  90. 90.
    Pötschke P, Fornes T, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43(11):3247–3255CrossRefGoogle Scholar
  91. 91.
    McClory C, McNally T, Baxendale M, Pötschke P, Blau W, Ruether M (2010) Electrical and rheological percolation of PMMA/MWCNT nanocomposites as a function of CNT geometry and functionality. Eur Polym J 46(5):854–868CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringAnhui University of Science and TechnologyHuainanPeople’s Republic of China
  2. 2.School of Energy Resources and SafetyAnhui University of Science and TechnologyHuainanPeople’s Republic of China
  3. 3.School of Mechanics and Engineering ScienceZhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations