Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 11, pp 2618–2623 | Cite as

Soybean Oil Modified Bio-based Poly(vinyl alcohol)s via Ring-Opening Polymerization

  • Gokhan AcikEmail author
Original paper
  • 39 Downloads

Abstract

In this paper, a simple method to modify the poly(vinyl alcohol) (PVA) through ring-opening reaction of epoxidized soybean oil (ESBO), catalyzed by hydrochloric acid is reported. The effect of ESBO loading ratio, in terms of mole (PVA/ESBO (n/n) = 1:0.5; 1:1 and 1:1.5) in the reaction medium, on the biodegradable, wettability and thermal properties of final PVA-SBO films is systematically investigated, comparing with PVA. The formation of PVA-SBOs is structurally confirmed by Fourier transform infrared (FT-IR) spectroscopy, whereas their wettability and thermal properties are studied by water contact angle (WCA) measurement, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC), respectively. The obtained PVA-SBOs with higher ESBO loading exhibit both improved thermal properties and higher hydrophobic characteristic compared to others. Furthermore, biodegradability of resulting PVA-SBOs is also investigated by enzymatic degradation experiments. It is determined that around 34% of PVA is degraded by enzymatic experiments after 30 days and PVA-SBO with lower ESBO loading is more degraded than others with around 52%. Consequently, some experimental results are presented to indicate that PVA-SBOs are encouraging materials for diverse applications and their extensions can be good candidate for reducing the environmental problem and consumption of petroleum resources.

Keywords

Biodegradable properties Epoxidized soybean oil Modification Poly(vinyl alcohol) 

Notes

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Acik G, Altinkok C, Tasdelen MA (2018) J Polym Sci A 56:2595CrossRefGoogle Scholar
  2. 2.
    Acik G, Kamaci M, Altinkok C, Karabulut HF, Tasdelen MA (2018) Progr Org Coat 123:261CrossRefGoogle Scholar
  3. 3.
    Lee S-H, Wang S (2006) Compos A 37:80CrossRefGoogle Scholar
  4. 4.
    Zhao R, Torley P, Halley PJ (2008) J Mater Sci 43:3058CrossRefGoogle Scholar
  5. 5.
    de Mesquita JP, Donnici CL, Teixeira IF, Pereira FV (2012) Carbohydr Polym 90:210CrossRefGoogle Scholar
  6. 6.
    Acik G, Yildiran S, Kok G, Salman Y, Tasdelen M (2017) Exp Polym Lett 11:799CrossRefGoogle Scholar
  7. 7.
    Islam MR, Beg MDH, Jamari SS (2014) J Appl Polym Sci 131:40787CrossRefGoogle Scholar
  8. 8.
    Konwar U, Karak N, Mandal M (2010) Progr Org Coat 68:265CrossRefGoogle Scholar
  9. 9.
    Saravari O, Phapant P, Pimpan V (2005) J Appl Polym Sci 96:1170CrossRefGoogle Scholar
  10. 10.
    Hablot E, Donnio B, Bouquey M, Avérous L (2010) Polymer 51:5895CrossRefGoogle Scholar
  11. 11.
    Pramanik S, Konwarh R, Sagar K, Konwar BK, Karak N (2013) Progr Org Coat 76:689CrossRefGoogle Scholar
  12. 12.
    Uysal N, Acik G, Tasdelen MA (2017) Polym Int 66:999CrossRefGoogle Scholar
  13. 13.
    Ding B, Kim HY, Lee SC, Shao CL, Lee DR, Park SJ, Kwag GB, Choi KJ (2002) J Polym Sci B 40:1261CrossRefGoogle Scholar
  14. 14.
    Thomas LV, Arun U, Remya S, Nair PD (2009) J Mater Sci 20:259Google Scholar
  15. 15.
    Pal K, Banthia AK, Majumdar DK (2007) Aaps Pharmscitech 8:142CrossRefGoogle Scholar
  16. 16.
    Kim JO, Park JK, Kim JH, Jin SG, Yong CS, Li DX, Choi JY, Woo JS, Yoo BK, Lyoo WS (2008) Int J Pharm 359:79CrossRefGoogle Scholar
  17. 17.
    Schmedlen RH, Masters KS, West JL (2002) Biomaterials 23:4325CrossRefGoogle Scholar
  18. 18.
    Onyari JM, Huang SJ (2009) J Appl Polym Sci 113:2053CrossRefGoogle Scholar
  19. 19.
    Açik G, Kamaci M, Özata B, ÖzenCansoy CE (2019) Turk J Chem 43:137CrossRefGoogle Scholar
  20. 20.
    Gaaz T, Sulong A, Akhtar M, Kadhum A, Mohamad A, Al-Amiery A (2015) Molecules 20:22833CrossRefGoogle Scholar
  21. 21.
    Shi R, Bi J, Zhang Z, Zhu A, Chen D, Zhou X, Zhang L, Tian W (2008) Carbohydr Polym 74:763CrossRefGoogle Scholar
  22. 22.
    Wang J, Ye L (2012) Polym Int 61:571CrossRefGoogle Scholar
  23. 23.
    Moulay S (2015) Polym Plast Technol Eng 54:1289CrossRefGoogle Scholar
  24. 24.
    Carlotti SJ, Giani-Beaune O, Schué F (2001) J Appl Polym Sci 80:142CrossRefGoogle Scholar
  25. 25.
    Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppara PV (2008)Google Scholar
  26. 26.
    Tang X, Alavi S (2011) Carbohydr Polym 85:7CrossRefGoogle Scholar
  27. 27.
    Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) J Biomed Mater Res B 100:1451CrossRefGoogle Scholar
  28. 28.
    Jia Y-T, Gong J, Gu X-H, Kim H-Y, Dong J, Shen X-Y (2007) Carbohydr Polym 67:403CrossRefGoogle Scholar
  29. 29.
    Kim JH, Shin DS, Han MH, Kwon OW, Lee HK, Lee SG, Ghim HD, Park JM, Han SS, Noh SK (2007) J Appl Polym Sci 105:424CrossRefGoogle Scholar
  30. 30.
    Kong X, Liu G, Qi H, Curtis JM (2013) Progr Org Coat 76:1151CrossRefGoogle Scholar
  31. 31.
    Wang C, Chen X, Chen J, Liu C, Xie H, Cheng R (2011) J Appl Polym Sci 122:2449CrossRefGoogle Scholar
  32. 32.
    Azarian MH, Boochathum P (2018) J Appl Polym Sci 135:46432CrossRefGoogle Scholar
  33. 33.
    Wu XS, Wang N (2001) J Biomater Sci Polym Ed 12:21CrossRefGoogle Scholar
  34. 34.
    Peng Z, Kong LX (2007) Polym Degrad Stab 92:1061CrossRefGoogle Scholar
  35. 35.
    Alam J, Alam M, Raja M, Abduljaleel Z, Dass L (2014) Int J Mol Sci 15:19924CrossRefGoogle Scholar
  36. 36.
    Oprea S (2011) J Mater Sci 46:2251CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Sciences and LettersPiri Reis UniversityIstanbulTurkey

Personalised recommendations