Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 11, pp 2577–2587 | Cite as

Abiotic Hydrolysis and Compostability of Blends Based on Cassava Starch and Biodegradable Polymers

  • Ivan TaiateleJr.
  • Tatiane C. Dal Bosco
  • Paula C. S. Faria-Tischer
  • Ana Paula Bilck
  • Fabio Yamashita
  • Janksyn Bertozzi
  • Roger N. Michels
  • Suzana MaliEmail author
Original paper
  • 57 Downloads

Abstract

When associated with polymer blends, starch may improve the biodegradability and compostability of other materials. The objectives of this work were to evaluate the abiotic hydrolysis and the composting process of films obtained from polymer blends between thermoplastic starch (TPS) and three other biodegradable polymers: poly[(butylene adipate)- co -(terephthalate)] (PBAT), poly(lactic acid) (PLA) and polyvinyl alcohol (PVA). PVA/TPS stood out as the most homogeneous blend and the one that showed the highest weight loss, with 46.21% of its initial weight remaining after abiotic hydrolysis tests. On the other hand, PBAT/TPS and PLA/TPS underwent more drastic and rapid degradation during composting in contrast to PVA/TPS. They became very fragmented after 21 days of composting, while the PVA/TPS was visually modified but remained unbroken until day 70. No blend sample exerted negative effects on the quality of the compost.

Keywords

Poly[(butylene adipate)- co -(terephthalate)] Poly(lactic acid) Polyvinyl alcohol Hydrolysis Composting 

Notes

Acknowledgements

IC scholarship holders (UTFPR-Londrina-Brazil) and CAPES-DS.

References

  1. 1.
    Neufeld L, Stassen F, Sheppard R, Gilman T. (2016) The new plastics economy: rethinking the future of plastics. World Economic Forum 2016. https://www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf. Acessed 21 March 2017
  2. 2.
    Pathal S, Sneha CLR, Mathew BB (2014) J Polym Biopolym Phys Chem 2:84–90Google Scholar
  3. 3.
    Song JH, Murphy RJ, Narayan R, Davies GBH (2009) Phil Trans R Soc B 364:2127–2139CrossRefPubMedGoogle Scholar
  4. 4.
    Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Chemosphere 73:429–442CrossRefPubMedGoogle Scholar
  5. 5.
    Olivato JB, Marini J, Yamashita F, Pollet E, Grossmann MVE, Avérous L (2017) Mater Sci Eng C 70:296–302CrossRefGoogle Scholar
  6. 6.
    Shirai MA, Olivato JB, Demiate IM, Müller CMO, Grossmann MVE, Yamashita F (2016) Polim: Cienv Tecnol 26:23–66Google Scholar
  7. 7.
    Zanela J, Casagrande M, Shirai MA, Lima VA, Yamashita F (2016) Polim: Cienv Tecnol 26:193–196CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Lambert S, Wagner M (2017) Chem Soc Rev 46:6855–6871CrossRefPubMedGoogle Scholar
  10. 10.
    Kijchavengkul T, Auras R (2008) Polym Int 57:793–804CrossRefGoogle Scholar
  11. 11.
    Stloukal P, Pekarová S, Kalendova A, Mattausch H, Laske S, Holzer C, Chitu L, Bodner S, Maier G, Slouf M, Koutny M (2015) Waste Manag 42:31–40CrossRefPubMedGoogle Scholar
  12. 12.
    ASTM International (2004) Standard specification for compostable plastics. ASTM International, West Conshohocken, PAGoogle Scholar
  13. 13.
    Rudnik E (2008) Compostable polymer materials—definitions, structures and methods of preparation. In: Rudnik E (ed) Compostable polymer materials. Elsevier, Amsterdam, pp 10–36CrossRefGoogle Scholar
  14. 14.
    Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análises de solo, plantas e outros materiais. Dpto de Solos da UFRGS, Porto Alegre, p 75Google Scholar
  15. 15.
    APHA, AWWA, WEF (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington, p 1360Google Scholar
  16. 16.
    Nunes MUC (2017) Compostagem de resíduos para produção de adubo orgânico na pequena propriedade. https://www.cpatc.embrapa.br/publicacoes_2010/ct_59.pdf. Acessed 5 April 2017
  17. 17.
    Carmo DL, Silva CA (2012) Rev Bras Cienc Solo 36:1211–1220CrossRefGoogle Scholar
  18. 18.
    Malavolta E, Vitti GC, Oliveira SA (1997) Avaliação do estado nutricional das plantas: princípios e aplicações. Potafos, Piracicaba, p 319Google Scholar
  19. 19.
    Shujun W, Jiugao Y (2005) Jinglin Yu. Polym Degrad Stab 87:395–401CrossRefGoogle Scholar
  20. 20.
    Olivato JB, Grossmann MVE, Bilck AP, Yamashita F (2012) Carbohydr Polym 90:159–164CrossRefPubMedGoogle Scholar
  21. 21.
    Shirai MA, Grossmann MVE, Mali S, Yamashita F, Garcia PS, Müller CMO (2013) Carbohydr Polym 92:19–22CrossRefPubMedGoogle Scholar
  22. 22.
    González-Seligra P, Guz L, Ochoa-Yepes O, Goyanes S, Famá L (2017) Lebensm Wiss Technol 84:520–528CrossRefGoogle Scholar
  23. 23.
    Al-Itry R, Lamnawar K, Maazouz A (2012) Polym Degrad Stab 97:1898–1914CrossRefGoogle Scholar
  24. 24.
    Ning YC (2011) Interpretation of organic spectra. John Wiley and Sons, SingaporeCrossRefGoogle Scholar
  25. 25.
    Wei D, Wang H, Xiao H, Zheng A, Yang Y (2015) Carbohydr Polym 123:275–282CrossRefPubMedGoogle Scholar
  26. 26.
    Kijchavengkul T, Auras R, Rubino M, Alvarado E, Montero JRC, Rosales JM (2010) Polym Degrad Stab 95:99–107CrossRefGoogle Scholar
  27. 27.
    Weng Y, Jin Y, Meng Q, Wang L, Zhang M, Wang Y (2013) Polym Test 32:918–926CrossRefGoogle Scholar
  28. 28.
    Brandelero RPH, Grossmann MV, Yamashita F (2012) Carbohydr Polym 90:1260–1452CrossRefGoogle Scholar
  29. 29.
    Kale G, Kijchavengkul T, Auras R, Rubino M, Selk SE, Singh SP (2007) Macromol Biosci 7:255–277CrossRefPubMedGoogle Scholar
  30. 30.
    ASTM International (2003) Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions. ASTM International, West Conshohocken, PAGoogle Scholar
  31. 31.
    Singh AS, Kapoor H (2014) Iran Polym J 23:655–662CrossRefGoogle Scholar
  32. 32.
    Arrieta MP, López J, Rayón E, Jiménez A (2014) Polym Degrad Stab 108:307–318CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biochemistry and BiotechnologyCCE, State University of LondrinaLondrinaBrazil
  2. 2.Department of Environmental EngineeringFederal University of Technology – ParanáLondrinaBrazil
  3. 3.Department of Food Science and TechnologyCCA, State University of LondrinaLondrinaBrazil
  4. 4.Department of ChemistryFederal University of Technology – ParanáLondrinaBrazil
  5. 5.Department of Mechanical EngineeringFederal University of Technology – ParanáLondrinaBrazil

Personalised recommendations