Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 11, pp 2439–2444 | Cite as

Highly Size-Selective Water-Insoluble Cross-Linked Carboxymethyl Cellulose Membranes

  • Ryo-ichi NakayamaEmail author
  • Tomoya Yano
  • Norikazu Namiki
  • Masanao Imai
Original paper
  • 33 Downloads

Abstract

Carboxymethyl cellulose (CMC) membranes have strong potential for application as molecular-scale separators. For this study, stable CMC membranes were fabricated with aluminum chloride (AlCl3) and iron(III) chloride (FeCl3) serving as cross-linkers. The resulting CMC-Al and CMC-Fe membranes were optically transparent and water-insoluble with sufficient mechanical strength for practical applications. The water permeation flux through the membranes was directly proportional to the operating pressure. With just a 10-fold increase in the molecular weight from 60 Da (urea) to 604 Da (bordeaux S), the effective diffusion coefficient (Deff) of the CMC-Al membrane increased 56-fold, and that of the CMC-Fe membrane increased 3500-fold. This significant correlation between Deff on molecular size indicated that the sizes of the mass transfer channels through the membrane were strictly monodisperse, in the range of molecular sizes that were tested.

Keywords

Carboxymethyl cellulose Membrane Mass transfer Water permeability Effective diffusion coefficient 

List of symbols

Ac

Initial cross-sectional area of membrane [m2]

Am

Effective area of membrane [m2]

Cfi

Initial concentration of the feed solution [mol/L]

Cs

Concentration of the stripping solution [mol/L]

D

Diffusion coefficient estimated from an empirical equation in bulk aqueous phase [m2/s]

Deff

Effective diffusion coefficient of membrane [m2/s]

d

Diameter of the glass petri dish [m]

Fmax

Maximum load at rupture [N]

HV

Volumetric water content of membrane, as defined by Eq. (1) [-]

JV

Volumetric water flux [\({\text{m}}_{\text{water}}^{3}\)/(\({\text{m}}_{\text{area}}^{2}\) s)]

KOL

Overall mass transfer coefficient [m/s]

KOL−1

Overall mass transfer resistance [(m/s)−1]

kL1−1

Membrane mass transfer resistance on feed side [(m/s)−1]

kL2−1

Membrane mass transfer resistance on stripping side [(m/s)−1]

km

Membrane mass transfer coefficient [m/s]

km−1

Membrane mass transfer resistance [(m/s)−1]

L

Length of membrane at rupture [m]

Li

Initial length of membrane [m]

Lp

Water permeability coefficient [\({\text{m}}_{\text{water}}^{3}\)/(\({\text{m}}_{\text{area}}^{2}\) Pa s)]

lm

Initial thickness of swollen membrane [m]

MP

Mass of permeated water [kg]

MW

Molecular weight [Da]

ΔP

Operating pressure [Pa]

t

Operating time [s]

V

Volume of aqueous phase in each transfer cell [m3]

Vp

Volumetric amount of permeated water [m3]

wd

Mass of the dried membrane [kg]

ws

Mass of the swollen membrane [kg]

Greek symbols

δ

Tensile strength [Pa]

λ

Maximum strain [%]

ΔΠ

Osmotic pressure [Pa]

ρs

Apparent density of the swollen membrane [kg/m3]

ρw

Density of water [kg/m3]

σ

Reflection coefficient of solute [-]

τ

Tortuosity of the membrane [-]

Notes

References

  1. 1.
    Arthanareeswaran G, Thanikaivelan P, Srinivasn K, Mohan D, Rajendran M (2004) Eur Polym J 40:2153–2159CrossRefGoogle Scholar
  2. 2.
    Baker RW (ed) (2012) 3rd membrane technology and applications. Wiley, ChichesterGoogle Scholar
  3. 3.
    Yang Z, Ma XH, Tang CY (2018) Desalination 434:37–59CrossRefGoogle Scholar
  4. 4.
    Pan K, Zhang X, Ren R, Cao B (2010) J Membr Sci 356:133–137CrossRefGoogle Scholar
  5. 5.
    Petrychkovych R, Setnickova K, Uchytil P (2013) Sep Purif Technol 107:85–90CrossRefGoogle Scholar
  6. 6.
    Nomura M, Sakanishi T, Utsumi YNK, Nakamura R (2013) Energy Procedia 37:1004–1011CrossRefGoogle Scholar
  7. 7.
    Lue SJ, Chen CH, Shih CM, Tsai MC, Kuo CY, Lai JY (2011) J Membr Sci 379:330–340CrossRefGoogle Scholar
  8. 8.
    Gierszewska M, Ostrowska-Czubenko J, Chrzanowska E (2018) Eur Polym J 101:282–290CrossRefGoogle Scholar
  9. 9.
    Wandera D, Wickramasinghe SR, Husson SM (2011) J Membr Sci 373:178–188CrossRefGoogle Scholar
  10. 10.
    Kadhom M, Deng B (2018) Appl Mater Today 11:219–230CrossRefGoogle Scholar
  11. 11.
    Liu M, Yu S, Tao J, Gao C (2008) J Membr Sci 325:947–956CrossRefGoogle Scholar
  12. 12.
    Liu B, Law AWK, Zhou K (2018) J Membr Sci 550:554–562CrossRefGoogle Scholar
  13. 13.
    Wu C, Wu Y, Luo J, Xu T, Fu Y (2010) J Membr Sci 356:96–104CrossRefGoogle Scholar
  14. 14.
    Xiong X, Duan J, Zou W, He X, Zheng W (2010) J Membr Sci 363:96–102CrossRefGoogle Scholar
  15. 15.
    Ibrahim MM, Koschella A, Kadry G, Heinze T (2013) Carbohydr Polym 95:414–420CrossRefGoogle Scholar
  16. 16.
    Sukma FM, Çulfaz-Emecen PZC (2018) J Membr Sci 545:329–336CrossRefGoogle Scholar
  17. 17.
    Hofman JAMH, Beerendonk EF, Folmer HC, Kruithof JC (1997) Desalination 113:209–214CrossRefGoogle Scholar
  18. 18.
    Murphy AP, Moody CD, Riley R, Lin SW, Murugaverl B, Rusin P (2001) J Membr Sci 193:111–121CrossRefGoogle Scholar
  19. 19.
    Sayed SE, Mahmoud KH, Fatah AA, Hassen A (2011) Phys B 406:4068–4076CrossRefGoogle Scholar
  20. 20.
    Hatanaka D, Yamamoto K, Kadokawa J (2014) Int J Biol Macromol 69:35–38CrossRefGoogle Scholar
  21. 21.
    Chen YM, Sun L, Yang SA, Shi L, Zheng WJ, Wei Z, Hu C (2017) Eur Polym J 94:501–510CrossRefGoogle Scholar
  22. 22.
    Liu Q, Zhang Y, Laskowski JS (2000) Int J Miner Process 60:229–245CrossRefGoogle Scholar
  23. 23.
    Corin KC, Harris PJ (2010) Miner Eng 23:915–920CrossRefGoogle Scholar
  24. 24.
    Pugh RJ (1989) Int J Miner Process 25:101–130CrossRefGoogle Scholar
  25. 25.
    Rodgers KE, Robertson JT, Espinoza T, Oppelt W, Cortese S, diZerega GS, Berg RA (2003) Spine J 3:277–284CrossRefGoogle Scholar
  26. 26.
    Huei GOS, Muniyandy S, Sathasivam T, Veeramachineni AK, Janarthanan P (2016) Chem Pap 70:243–252Google Scholar
  27. 27.
    Nie H, Liu M, Zhan F, Guo M (2004) Carbohydr Polym 58:185–189CrossRefGoogle Scholar
  28. 28.
    Chitprasert P, Sudsai P, Rodklongtan A (2012) Carbohydr Polym 90:78–86CrossRefGoogle Scholar
  29. 29.
    Sathasivam T, Muniyandy S, Chuah LH, Janarthanan P (2018) J Food Eng 231:10–21CrossRefGoogle Scholar
  30. 30.
    Iannuccelli V, Fomi F, Vandelli MA, Bernabei MT, Forni F (1993) J Control Release 23:13–20CrossRefGoogle Scholar
  31. 31.
    Hosny EA, Al-Helw AA (1998) Pharm Acta Helv 72:255–261CrossRefGoogle Scholar
  32. 32.
    Wu P, Imai M (2013) Desalin Water Treat 51:5237–5247CrossRefGoogle Scholar
  33. 33.
    Kashima K, Imai M (2017) Food Bioprod Process 102:213–221CrossRefGoogle Scholar
  34. 34.
    Takahashi T, Imai M, Suzuki I (2008) Biochem Eng J 42:20–27CrossRefGoogle Scholar
  35. 35.
    Sarkar C, Chowdhuri AR, Kumar A, Laha D, Garai S, Chakraborty J, Sahu SK (2018) Carbohydr Polym 181:710–718CrossRefGoogle Scholar
  36. 36.
    Zhang W, Yu Z, Qian Q, Zhang Z, Wang X (2010) J Membr Sci 348:213–223CrossRefGoogle Scholar
  37. 37.
    Boricha AG, Murthy ZVP (2010) Chem Eng J 157:393–400CrossRefGoogle Scholar
  38. 38.
    Kedem O, Katchalsky A (1963) Trans Faraday Soc 59:1918–1930CrossRefGoogle Scholar
  39. 39.
    Mehiguene K, Garba Y, Taha S, Gondrexon N, Dorange G (1999) Sep Purif Technol 15:181–187CrossRefGoogle Scholar
  40. 40.
    Wu P, Imai M (2011) Desalin Water Treat 34:239–245CrossRefGoogle Scholar
  41. 41.
    So MT, Eirich FR, Strathmann H, Baker RW (1973) J Polymer Sci Polym Lett Ed 11:201–205CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ryo-ichi Nakayama
    • 1
    Email author
  • Tomoya Yano
    • 1
  • Norikazu Namiki
    • 1
  • Masanao Imai
    • 2
  1. 1.Department of Environmental Chemistry and Chemical Engineering, School of Advanced EngineeringKogakuin UniversityTokyoJapan
  2. 2.Course in Bioresource Utilization Sciences, Graduate School of Bioresource SciencesNihon UniversityFujisawaJapan

Personalised recommendations