Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 11, pp 2341–2351 | Cite as

Enzymatic Hydrolysis of Poly (Caprolactone) and its Blend with Styrene–Butadiene–Styrene (40% PCL/60% SBS)

  • Abir Ben AbdallahEmail author
  • Achraf Kallel
  • Fehmi Gamaoun
  • Abbas Tcharkhtchi
Original paper
  • 68 Downloads

Abstract

In this study, we aim to evaluate the effect of enzymatic hydrolysis on aliphatic polyester and on its shape memory blend. Therefore, the hydrolysis of poly (ɛ-caprolactone) (PCL) and of its shape memory polymer (SMP) blend [40% PCL/60% styrene–butadiene–styrene (SBS)] in a solution containing an Amano lipase from pseudomonas fluorescence and a phosphate buffered saline (PBS), is achieved. An appropriate characterization helps to better understand the behaviour of these polymers. So, the properties of these materials prior and after hydrolytic degradation are investigated. When they are submitted to enzymatic hydrolysis, the physico-chemical and mechanical properties of PCL and its blend (PCL/SBS) change. PCL undergoes a significant decrease in weight during enzymatic hydrolysis. Yet, blending PCL with SBS considerably reduces its degradation rate in terms of weight drop, compared with pure PCL. The enzymatic hydrolysis causes chains splitting, which rises their mobility and facilitates their reorientation. Consequently, for PCL and its blend, the degree of crystallinity Xc rises during hydrolytic degradation, which confirms that the amorphous regions of PCL are more susceptible to hydrolysis. Besides, this continuous rise in crystallinity causes the augmentation of PCL and its blend melting, crystallization and glass transition temperatures. Moreover, the PCL brittleness increases, and the blend ductility decreases with the enzymatic hydrolysis time. For both, PCL and its blend, the young modulus displays two opposite effects; it goes up due the growth of crystallinity, but at the end of hydrolysis, its value goes down because of weight loss.

Keywords

Poly (ɛ-caprolactone) SMP blend (40% PCL/60% SBS) Enzymatic hydrolytic degradation Weight loss Properties alteration 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict interest.

References

  1. 1.
    Malberg S, Hoglund A, Albertsson AC (2011) Macromolecular design of aliphatic polyesters with maintained properties mechanical properties and a rapid, customized degradation profile. Biomacromolecules 12(6):2382–2388CrossRefGoogle Scholar
  2. 2.
    Gan Z, Liang Q, Zhang J, Jing X (1997) Enzymatic degradation of poly (ε-caprolactone) film in phosphate buffer solution containing lipases. Polym Deg Stab 56(2):209–213CrossRefGoogle Scholar
  3. 3.
    Tjong SC, Xu Y, Meng YZ (1999) Compatibility and degradation of blends of poly (caprolactone)–Poly (ethylene glycol) blocks copolymer and polypropylene. Polymer 40(13):3703–3710CrossRefGoogle Scholar
  4. 4.
    Tjong SC, Bei JZ (1998) Degradation behavior of poly (caprolactone)–poly (ethylene glycol) block copolymer/low-density polyethylene blends. Polym Eng Sci 38(3):392–402CrossRefGoogle Scholar
  5. 5.
    Zhang H, Wang H, Zhong W (2009) A novel type of shape memory polymer blend and the shape memory mechanism. Polymer 50(6):1596–1601CrossRefGoogle Scholar
  6. 6.
    Ben Abdallah A, Kallel A, Gamaoun F (2017) Shape memory property and driving force of the shape memory blend (40% PCL/60% SBS). In: 7th international conference design modelling mechanical system, TunisiaGoogle Scholar
  7. 7.
    Behl M, Lendlein A (2007) Shape memory polymers. Mater Today 10(4):20–28CrossRefGoogle Scholar
  8. 8.
    Tcharktchi A, Abdallah-Elhirtsi S, Ebrahimi K, Fitoussi J, Shirinbayan M, Farzaneh S (2014) Some new concepts of shape memory effect of polymers. Polymers 6(4):1144–1163CrossRefGoogle Scholar
  9. 9.
    Farzaneh S, Fitoussi J, Lucas A, Bocquet M, Tcharktchi A (2012) Shape memory effect and shape memory properties of polyurethane. J Appl Polym Sci 28:3240–3249Google Scholar
  10. 10.
    Hakkarainen M, Albertsson AC, Karlsson S (1996) Weight losses and molecular weight changes correlated with the evolution of hydroxyl-acids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polym Deg Stab 52(3):283–291CrossRefGoogle Scholar
  11. 11.
    Benedict CV, Cook WJ, Jarrett P, Cameron JA, Huang SJ, Bell JP (1983) Biodegradable polymers. J Appl Polym Sci 28:327CrossRefGoogle Scholar
  12. 12.
    Mochizuki M, Hirano M, Kanmuri Y, Kudo K, Tokiwa Y (1995) Hydrolysis of poly (caprolactone) fibers by lipase: effect of draw ratio on enzymatic degradation. J Appl Polym Sci 55(2):289–296CrossRefGoogle Scholar
  13. 13.
    Marten E, Muller E, Deckwer WD (2003) Studies on the enzymatic hydrolysis of polyesters I. Low molecular mass model esters and aliphatic polyesters. Polym Deg Stab 80(3):485–501CrossRefGoogle Scholar
  14. 14.
    Liu L, Li S, Garreau H, Vert M (2000) Selective enzymatic degradations of poly (l-lactide) and poly (e-caprolactone) blend films. Biomacromolecules 1(3):350–359CrossRefGoogle Scholar
  15. 15.
    Tokiwa Y, Ando T, Suzuki T (1976) Degradation of poly (caprolactone) by a fungus. J Ferment Technol 3:603–608Google Scholar
  16. 16.
    Tsuji H, Ikarashi K (2004) In vitro hydrolysis of poly (l-lactide) crystalline residues as extended-chain crystallites: III. Effects of pH and enzyme. Polym Deg Stab 85(1):647–656CrossRefGoogle Scholar
  17. 17.
    Doi Y, Kasuya KI, Abe H, Koyama N, Koichi T, Shin I, Yoshida Y (1996) Evaluation of biodegradability’s of biosynthetic and chemosynthetic polyesters in river water. Polym Deg Stab 51(3):281–287CrossRefGoogle Scholar
  18. 18.
    Jarrett P, Benedict CV, Bell JP, Cameron JA, Huang SJ (1984) In: Shalaby W (ed) Polymers as biomaterials. Springer, New York, p 181CrossRefGoogle Scholar
  19. 19.
    Tokiwa Y, Suzuki T (1977) Hydrolysis of polyesters by lipases. Nature 270:76–78CrossRefGoogle Scholar
  20. 20.
    Hakkarainen M, Albertsson AC (2008) Degradation products of Aaiphatic and aliphatic–aromatic polyesters. Adv Polym Sci 211(1):85–116CrossRefGoogle Scholar
  21. 21.
    Rizzarelli P, Impallomeni G, Montaudo G (2004) Evidence for selective hydrolysis of aliphatic copolyesters iduced by lipase catalysis. Biomacromolecules 5(2):433–444CrossRefGoogle Scholar
  22. 22.
    Tsuji H, Ishizaka T (2001) Porous biodegradable polyesters. II. Physical properties, morphology, and enzymatic and alkaline hydrolysis of porous poly(ε-caprolactone) films. J Appl Polym Sci 80(12):2281–2291CrossRefGoogle Scholar
  23. 23.
    Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10(9):3722–3742CrossRefGoogle Scholar
  24. 24.
    Li S, Liu L, Garreau H, Vert M (2003) Lipase-catalyzed biodegradation of poly (ɛ-caprolactone) blended with various poly (lactide): based polymers. Biomacromolecules 4(2):372–377CrossRefGoogle Scholar
  25. 25.
    Patel HN, Thai KN, Chowdhury S, Singh R, Vohra YK, Thomas V (2015) In vitro degradation and cell attachment studies of a new electro-spun polymeric tubular graft. Prog Biomater 4(2–4):67–76CrossRefGoogle Scholar
  26. 26.
    Göpferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17(2):103–114CrossRefGoogle Scholar
  27. 27.
    Tsuji H, Ishizaka T (2001) Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly (ɛ-caprolactone) and poly (l-lactide). Inter J Biol Macromol 29:83–89CrossRefGoogle Scholar
  28. 28.
    Tilstra L, Johnsonbaugh D (1993) The biodegradation of blends of poly (caprolactone) and polyethylene exposed to defined consortium of fungi. J. Environ Polym Deg 1(4):257–267CrossRefGoogle Scholar
  29. 29.
    Castilla-Cortázar I, Más-Estellés J, Meseguer-Dueñas JM, Escobar Ivirico JL, Marí B, Vidaurre A (2012) Hydrolytic and enzymatic degradation of a poly (ε-caprolactone) network. Polym Deg Stab 97(8):1241–1248CrossRefGoogle Scholar
  30. 30.
    Manandhar S (2011) Bioresorbable polymer blend scaffold for tissue engineering. University of North Texas, Denton, TXGoogle Scholar
  31. 31.
    Biron M (2000) Elastomères thermoplastiques (TPE). Technique de l’ingénieur, Saint-DenisGoogle Scholar
  32. 32.
    Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) FTIR study of polycaprolactone chain organization at interfaces. J Colloid Int Sci 273(2):381–387CrossRefGoogle Scholar
  33. 33.
    Massardier V (2001) Etat de l’art concernant la compatibilité des matières plastiques. INSA de Lyon, VilleurbanneGoogle Scholar
  34. 34.
    Hayashi T, Kanai H, Hayashi T (2001) Enzymatic degradation of poly (ε-caprolactone) fibers in vitro. Polym J 33(1):38–41CrossRefGoogle Scholar
  35. 35.
    Fukushima K, Feijoo JL, Yang MC (2012) Abiotic degradation of poly (l-lactide), poly (caprolactone) and their blends. Polym Deg Stab 97:2347–2355CrossRefGoogle Scholar
  36. 36.
    Meseguer-Duenas JM, Mas-Estelles J, Castilla-Cortazar I, Escobar Ivirico JL, Vidaurre A (2011) Alkaline degradation study of linear and network poly (ɛ-caprolactone). J Mater Sci Mater Med 22(1):11–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire PIMMArts et Métiers ParisTech, CNRS, Cnam, HESAM UniversitéParisFrance
  2. 2.Laboratoire Mécanique de SousseUniversité de Sousse, ENISOSousseTunisia
  3. 3.Léonard de Vinci Pôle Universitaire, Research CenterParisFrance
  4. 4.Department of Mechanical Engineering, College of EngineeringKing Khalid UniversityAbhaSaudi Arabia
  5. 5.National School of Engineers of SousseSousse UniversitySousseTunisia

Personalised recommendations