Advertisement

Chitosan/Polyaniline Conductive Blends for Developing Packaging: Electrical, Morphological, Structural and Thermal Properties

  • Ana Carolina Salgado de OliveiraEmail author
  • Julio Cesar Ugucioni
  • Roney Alves da Rocha
  • Taline Amorim Santos
  • Soraia Vilela Borges
Original paper
  • 3 Downloads

Abstract

The present study aim to evaluate the development of electrical conducting blends made from the biodegradable polymer, chitosan (Cs), and polyaniline (PANI) doped with dodecylbenzene sulfonic acid dissolved in acid solution chitosan, to enable development of conductive and smart packages that help to monitor exposure conditions of food aimed to reduce food waste. Concentration of Cs is fixed (2%), and PANI (80, 100 mg mL−1) and glutaraldehyde (Glut) (0.625 × 10−3 μL) concentrations are alter. Morphological (SEM), structural (FTIR, RAMAN), thermal (TGA) and electrical (Hall effect) properties are evaluate. Blends were predominantly negative carriers, with conductivity in order of 10−1 S cm−1. Best formulations are those make without of Glut. Analyses show an interaction between components. FTIR show bands characteristic of benzene and quinoid rings of PANI, and RAMAN exhibit a band related to PANI’s protonation. TGA show maintenance of maximum degradation temperature of PANI. This results evidence maintenance of PANI’s conducting structures even after blends synthesis.

Keywords

Polymers Raman Hall effect Charge carriers Semiconductor materials 

Notes

Acknowledgements

The authors thank FAPEMIG (Research Support Foundation of the State of Minas Gerais), CNPq (National Council for Scientific and Technological Development) and CAPES (Coordination of Improvement of Higher Level Personnel) for financial support and scholarships. The authors would like to thank Laboratory of Electron Microscopy and Analysis of Ultrastructural Federal University of Lavras, (http://www.prp.ufla.br/labs/microscopiaeletronica/) and Finep, Fapemig, CNPq and Capes for supplying the equipment and technical support for experiments involving electron microscopy. The authors would like to thank the Central of Analysis and Chemical Prospecting of the Federal University of Lavras, and Finep, Fapemig, CNPq e Capes for supplying the equipment and technical support for experiments involving FTIR and TGA analyzes. Authors thank Department of Physics of the Federal University of Lavras for provision of equipment and technical support for experiments in Raman Spectroscopy, and Federal University of Juiz de Fora for provision of equipment and technical support for experiments in Hall effect.

References

  1. 1.
    Avérous L, Pollet E (2012) Biodegradable polymers. Environmental silicate nano-biocomposites. Springer, New York, pp 13–39.  https://doi.org/10.1007/978-1-4471-4108-2_2 CrossRefGoogle Scholar
  2. 2.
    Brito G, Agrawal P, Araújo E, Mélo T (2011) Biopolímeros, polímeros biodegradáveis e polímeros verdes. Rev Eletrôn Mater Process 6(2):127–139Google Scholar
  3. 3.
    Rehmat Z, Mohammed WS, Anal AK (2018) Chitosan-based nanomatrix for the immobilization of ochratoxin-A conjugate on surface plasmon resonance chips. Colloid Polym Sci 296(3):617–625.  https://doi.org/10.1007/s00396-018-4274-2 CrossRefGoogle Scholar
  4. 4.
    Valencia-Sullca C, Vargas M, Atarés L, Chiralt A (2018) Thermoplastic cassava starch–chitosan bilayer films containing essential oils. Food Hydrocoll 75:107–115.  https://doi.org/10.1016/j.foodhyd.2017.09.008 CrossRefGoogle Scholar
  5. 5.
    Moreno JAS, Mendes AC, Stephansen K, Engwer C, Goycoolea FM, Boisen A, Nielsen LH, Chronakis IS (2018) Development of electrosprayed mucoadhesive chitosan microparticles. Carbohyd Polym 190:240–247.  https://doi.org/10.1016/j.carbpol.2018.02.062 CrossRefGoogle Scholar
  6. 6.
    Boggione MJ, Zilli MP, Allasia MB, Farruggia B (2018) Synthesis of polymeric matrices for adsorption and purification of endoglucanase. J Polym Environ 26(12):4321–4330.  https://doi.org/10.1007/s10924-018-1303-7 CrossRefGoogle Scholar
  7. 7.
    Dayarian S, Zamani A, Moheb A, Masoomi M (2014) Physico-mechanical properties of films of chitosan, carboxymethyl chitosan, and their blends. J Polym Environ 22(3):409–416.  https://doi.org/10.1007/s10924-014-0672-9 CrossRefGoogle Scholar
  8. 8.
    Fan J, Chen Q, Li J, Wang D, Zheng R, Gu Q, Zhang Y (2018) Preparation and dewatering property of two sludge conditioners chitosan/AM/AA and chitosan/AM/AA/DMDAAC. J Polym Environ.  https://doi.org/10.1007/s10924-018-1342-0 Google Scholar
  9. 9.
    Dias MV, Azevedo VM, Borges SV, Soares NdFF, de Barros Fernandes RV, Marques JJ, Medeiros ÉAA (2014) Development of chitosan/montmorillonite nanocomposites with encapsulated α-tocopherol. Food Chem 165:323–329.  https://doi.org/10.1016/j.foodchem.2014.05.120 CrossRefGoogle Scholar
  10. 10.
    Bonilla J, Vargas M, Atarés L, Chiralt A (2014) Effect of chitosan essential oil films on the storage-keeping quality of pork meat products. Food Bioprocess Technol 7(8):2443–2450.  https://doi.org/10.1007/s11947-014-1329-3 CrossRefGoogle Scholar
  11. 11.
    Medeiros ES, Oliveira JE, Consolin-Filho N, Paterno L, Mattoso LH (2012) Uso de polímeros condutores em sensores. Parte 1: Introdução aos polímeros condutores. Rev Eletrôn Mater Process 7(2):62–77Google Scholar
  12. 12.
    Mattoso LHC (1996) Polianilinas: síntese, estrutura e propriedades. Quim Nova 19(4):388–399Google Scholar
  13. 13.
    Mini V, Archana K, Raghu S, Sharanappa C, Devendrappa H (2016) Nanostructured multifunctional core/shell ternary composite of polyaniline-chitosan-cobalt oxide: preparation, electrical and optical properties. Mater Chem Phys 170:90–98.  https://doi.org/10.1016/j.matchemphys.2015.12.023 CrossRefGoogle Scholar
  14. 14.
    Thanpitcha T, Sirivat A, Jamieson AM, Rujiravanit R (2006) Preparation and characterization of polyaniline/chitosan blend film. Carbohyd Polym 64(4):560–568.  https://doi.org/10.1016/j.carbpol.2005.11.026 CrossRefGoogle Scholar
  15. 15.
    Thanpitcha T, Sirivat A, Jamieson AM, Rujiravanit R (2010) Fabrication and properties of solution-cast polyaniline/carboxymethylchitin blend films. J Appl Polym Sci 116(3):1626–1634.  https://doi.org/10.1002/app.31494 Google Scholar
  16. 16.
    Rusen E, Diacon A, Damian C, Gavrila R, Dinescu A, Dumitrescu A, Zecheru T (2018) Electroconductive materials based on carbon nanofibers and polyaniline. J Appl Polym Sci 135(48):46873.  https://doi.org/10.1002/app.46873 CrossRefGoogle Scholar
  17. 17.
    Ulutürk C, Alemdar N (2018) Electroconductive 3D polymeric network production by using polyaniline/chitosan-based hydrogel. Carbohyd Polym 193:307–315.  https://doi.org/10.1016/j.carbpol.2018.03.099 CrossRefGoogle Scholar
  18. 18.
    Kim SJ, Kim MS, Kim SI, Spinks GM, Kim BC, Wallace GG (2006) Self-oscillatory actuation at constant DC voltage with pH-sensitive chitosan/polyaniline hydrogel blend. Chem Mater 18(24):5805–5809.  https://doi.org/10.1021/cm060988h CrossRefGoogle Scholar
  19. 19.
    Geleta GS, Zhao Z, Wang Z (2018) A novel reduced graphene oxide/molybdenum disulfide/polyaniline nanocomposite-based electrochemical aptasensor for detection of aflatoxin B 1. Analyst 143(7):1644–1649.  https://doi.org/10.1039/c7an02050c CrossRefGoogle Scholar
  20. 20.
    Müller P, Schmid M (2019) Intelligent packaging in the food sector: a brief overview. Foods 8(1):16CrossRefGoogle Scholar
  21. 21.
    de Oliveira ACS, Ugucioni JC, da Rocha RA, Borges SV (2018) Development of whey protein isolate/polyaniline smart packaging: morphological, structural, thermal, and electrical properties. J Appl Polym Sci.  https://doi.org/10.1002/app.47316 Google Scholar
  22. 22.
    Zhong Y, Song X, Li Y (2011) Antimicrobial, physical and mechanical properties of kudzu starch–chitosan composite films as a function of acid solvent types. Carbohyd Polym 84(1):335–342CrossRefGoogle Scholar
  23. 23.
    Ferreira DF (2014) Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciênc Agrotecnol 38(2):109–112.  https://doi.org/10.1590/S1413-70542014000200001 CrossRefGoogle Scholar
  24. 24.
    Rodrigues IR, de Camargo Forte MM, Azambuja DS, Castagno KR (2007) Synthesis and characterization of hybrid polymeric networks (HPN) based on polyvinyl alcohol/chitosan. React Funct Polym 67(8):708–715.  https://doi.org/10.1016/j.reactfunctpolym.2007.05.010 CrossRefGoogle Scholar
  25. 25.
    Ma X, Liu A, Xu H, Li G (2007) Growth of ramification-like ZnO rods in the presence of polyaniline. Colloid Polym Sci 285(14):1631–1635.  https://doi.org/10.1007/s00396-007-1739-0 CrossRefGoogle Scholar
  26. 26.
    Rao V, Ramaprasad A (2007) Optical and conductivity studies of pseudo-doped chitin-polyaniline blend. J Appl Polym Sci 106(1):309–313.  https://doi.org/10.1002/app.26068 CrossRefGoogle Scholar
  27. 27.
    Beppu M, Vieira R, Aimoli C, Santana C (2007) Crosslinking of chitosan membranes using glutaraldehyde: effect on ion permeability and water absorption. J Membr Sci 301(1–2):126–130CrossRefGoogle Scholar
  28. 28.
    Geethalakshmi D, Muthukumarasamy N, Balasundaraprabhu R (2016) CSA-doped PANI/TiO2 hybrid BHJ solar cells: material synthesize and device fabrication. Mater Sci Semicond Process 51:71–80.  https://doi.org/10.1016/j.mssp.2016.05.006 CrossRefGoogle Scholar
  29. 29.
    Kittel C (2000) Introdução à física do estado sólido. Grupo Gen-LTC, Sao PauloGoogle Scholar
  30. 30.
    Marcasuzaa P, Reynaud S, Ehrenfeld F, Khoukh A, Desbrieres J (2010) Chitosan-graft-polyaniline-based hydrogels: elaboration and properties. Biomacromolecules 11(6):1684–1691.  https://doi.org/10.1021/bm100379z CrossRefGoogle Scholar
  31. 31.
    Yavuz AG, Uygun A, Bhethanabotla VR (2009) Substituted polyaniline/chitosan composites: synthesis and characterization. Carbohyd Polym 75(3):448–453.  https://doi.org/10.1016/j.carbpol.2008.08.005 CrossRefGoogle Scholar
  32. 32.
    Bibi S, Jamil A, Yasin T, Rafiq MA, Nawaz M, Price GJ (2018) Ultrasound promoted synthesis and properties of chitosan nanocomposites containing carbon nanotubes and silver nanoparticles. Eur Polym J.  https://doi.org/10.1016/j.eurpolymj.2018.06.004 Google Scholar
  33. 33.
    dos Santos TC, Hernández R, Rescignano N, Boff L, Reginatto FH, Simões CMO, de Campos AM, Mijangos C (2018) Nanocomposite chitosan hydrogels based on PLGA nanoparticles as potential biomedical materials. Eur Polymer J 99:456–463.  https://doi.org/10.1016/j.eurpolymj.2017.12.039 CrossRefGoogle Scholar
  34. 34.
    Zhao J, Zou Z, Ren R, Sui X, Mao Z, Xu H, Zhong Y, Zhang L, Wang B (2018) Chitosan adsorbent reinforced with citric acid modified β-cyclodextrin for highly efficient removal of dyes from reactive dyeing effluents. Eur Polymer J 108:212–218.  https://doi.org/10.1016/j.eurpolymj.2018.08.044 CrossRefGoogle Scholar
  35. 35.
    Prudêncio L, Camilo FF, Faez R (2014) Ionic liquids as plasticizers in nitrile rubber/polyaniline blends. Quim Nova 37(4):618–623.  https://doi.org/10.5935/0100-4042.20140103 CrossRefGoogle Scholar
  36. 36.
    Akti F, Okur M (2018) The removal of acid violet 90 from aqueous solutions using PANI and PANI/clinoptilolite composites: isotherm and kinetics. J Polym Environ 26(11):4233–4242.  https://doi.org/10.1007/s10924-018-1297-1 CrossRefGoogle Scholar
  37. 37.
    Minisy I, Salahuddin N, Ayad M (2018) Chitosan/polyaniline hybrid for the removal of cationic and anionic dyes from aqueous solutions. J Appl Polym Sci 47:056.  https://doi.org/10.1002/app.47056 Google Scholar
  38. 38.
    Karpuraranjith M, Thambidurai S (2016) Biotemplate-SnO2 particles intercalated PANI matrix: enhanced photo catalytic activity for degradation of MB and RY-15 dye. Polym Degrad Stab 133:108–118.  https://doi.org/10.1016/j.polymdegradstab.2016.08.006 CrossRefGoogle Scholar
  39. 39.
    Bhatt R, Sreedhar B, Padmaja P (2017) Chitosan supramolecularly cross linked with trimesic acid: facile synthesis, characterization and evaluation of adsorption potential for chromium(VI). Int J Biol Macromol 104:1254–1266.  https://doi.org/10.1016/j.ijbiomac.2017.06.067 CrossRefGoogle Scholar
  40. 40.
    Cao L, Zhang F, Wang Q, Wu X (2017) Fabrication of chitosan/graphene oxide polymer nanofiber and its biocompatibility for cartilage tissue engineering. Mater Sci Eng C 79:697–701.  https://doi.org/10.1016/j.msec.2017.05.056 CrossRefGoogle Scholar
  41. 41.
    Ramesh S, Lungaro L, Tsikritsis D, Weflen E, Rivero IV, Elfick AP (2018) Fabrication and evaluation of poly (lactic acid), chitosan, and tricalcium phosphate biocomposites for guided bone regeneration. J Appl Polym Sci 135(39):46692.  https://doi.org/10.1002/app.46692 CrossRefGoogle Scholar
  42. 42.
    Deshmukh MA, Patil HK, Bodkhe GA, Yasuzawa M, Koinkar P, Ramanavicius A, Pandey S, Shirsat MD (2018) EDA modified PANI/SWNTs nanocomposite for determination of Ni(II) metal ions. Colloids Surf A 537:303–309.  https://doi.org/10.1016/j.colsurfa.2017.10.026 CrossRefGoogle Scholar
  43. 43.
    Shakoor A, Rizvi TZ (2010) Raman spectroscopy of conducting poly (methyl methacrylate)/polyaniline dodecylbenzene sulfonate blends. J Raman Spectrosc 41(2):237–240.  https://doi.org/10.1002/jrs.2414 Google Scholar
  44. 44.
    Wang S, Rogachev A, Yarmolenko M, Rogachev A, Xiaohong J, Gaur M, Luchnikov P, Galtseva O, Chizhik S (2018) Structure and properties of polyaniline nanocomposite coatings containing gold nanoparticles formed by low-energy electron beam deposition. Appl Surf Sci 428:1070–1078.  https://doi.org/10.1016/j.apsusc.2017.09.225 CrossRefGoogle Scholar
  45. 45.
    Deka C, Deka D, Bora MM, Jha DK, Kakati DK (2018) Investigation of pH-sensitive swelling and curcumin release behavior of chitglc hydrogel. J Polym Environ 26(10):4034–4045.  https://doi.org/10.1007/s10924-018-1272-x CrossRefGoogle Scholar
  46. 46.
    Bigogno RG, Rodríguez RJS, de Freitas Abreu M (2018) Quaternized chitosan for ecological treatment of bauxite mining effluents. J Polym Environ 26(11):4169–4175.  https://doi.org/10.1007/s10924-018-1289-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ana Carolina Salgado de Oliveira
    • 1
    Email author
  • Julio Cesar Ugucioni
    • 2
  • Roney Alves da Rocha
    • 1
  • Taline Amorim Santos
    • 1
  • Soraia Vilela Borges
    • 1
  1. 1.Department of Food ScienceFederal University of LavrasLavrasBrazil
  2. 2.Department of PhysicsFederal University of LavrasLavrasBrazil

Personalised recommendations