Removal of Methylene Blue from Aqueous Solutions Using Poly(vinyl alcohol)/Montmorillonite Nanocomposite Hydrogels: Taguchi Optimization

  • Ehsan Roufegari-Nejhad
  • Mohammad SirousazarEmail author
  • Vahid Abbasi-Chiyaneh
  • Farshad Kheiri
Original paper


Nanocomposite hydrogel adsorbents on the basis of poly(vinyl alcohol) containing 0, 4, 8 and 12 wt% (based on dry basis) of montmorillonite were prepared using a cyclic freezing–thawing process. The capabilities of the adsorbents in adsorbing of a cationic dye, methylene blue, were studied in aqueous solutions having different temperatures, pH and concentrations. The Taguchi method was utilized to optimize the controllable factors, including the montmorillonite loading level, the solution temperature and pH and also the methylene blue concentration in adsorption solution. The prepared nanocomposite hydrogel adsorbents were characterized by Fourier transform infrared spectroscopy and their gel content and swelling values were also measured. The results showed that the gel content and swelling of nanocomposite hydrogel adsorbents had a direct and inverse dependency to the loading level of incorporated montmorillonite to adsorbent, respectively. The successful dye adsorption by the prepared nanocomposite hydrogel adsorbents was confirmed by the Fourier transform infrared spectroscopy. Based on the Taguchi method, the optimized conditions for methylene blue adsorption were found as: montmorillonite loading level of 12 wt%, adsorption temperature of 50 °C, pH of the aqueous solution of 9 and methylene blue concentration in adsorption solution of 5 mg/L. The percentage contribution of each parameter on the removal of methylene blue was determined using the Analysis of Variance method and the following order was found: temperature > concentration of methylene blue in solution > montmorillonite loading level in adsorbent > pH.


Nanocomposite hydrogel Adsorption Taguchi method Poly(vinyl alcohol) Methylene blue 



  1. 1.
    Belhouchat N, Zaghouane-Boudiaf H, Viseras C (2017) Appl Clay Sci 135:9–15CrossRefGoogle Scholar
  2. 2.
    Mahdavinia GR, Iravani S, Zoroufi S, Hosseinzadeh H (2014) Iran Polym J 23:335–344CrossRefGoogle Scholar
  3. 3.
    Mohammadi T, Kazemi P (2014) Desalin Water Treat 52:1341–1349CrossRefGoogle Scholar
  4. 4.
    Mbacke MK, Kane C, Diallo NO, Diop CM, Chauvet F, Comtat M, Tzedakis T (2016) J Environ Chem Eng 4:4001–4011CrossRefGoogle Scholar
  5. 5.
    Cano OA, Gonzalez CAR, Paz JFH, Madrid PA, Casillas PEG, Hernandez ALM, Perez CAM (2017) Catal Today 282:168–173CrossRefGoogle Scholar
  6. 6.
    Senan RC, Abraham TE (2004) Biodegradation 15:275–280CrossRefGoogle Scholar
  7. 7.
    Agnihotri S, Singhal R (2019) J Polym Environ 27:372–385CrossRefGoogle Scholar
  8. 8.
    Ahmad R, Kumar R (2011) Clean Soil Air Water 39:74–82CrossRefGoogle Scholar
  9. 9.
    Miclescu A, Wiklund L (2010) J Rom Anest Terap Int 17:35–41Google Scholar
  10. 10.
    Murugesan A, Divakaran M, Raveendran P, Nikamanth ABN, Thelly KJ (2019) J Polym Environ 27:1007–1024CrossRefGoogle Scholar
  11. 11.
    Hameed BH, Ahmad AA (2009) J Hazard Mater 164:870–875CrossRefGoogle Scholar
  12. 12.
    Zolfaghari R, Katbab AA, Nabavizadeh J, Tabasi RY, Nejad MH (2006) J Appl Polym Sci 100:2096–2103CrossRefGoogle Scholar
  13. 13.
    Sirousazar M, Kokabi M, Hassan ZM, Bahramian AR (2011) Sci Iran F 18:780–784Google Scholar
  14. 14.
    Abdurrahmanoglu S, Can V, Okay O (2008) J Appl Polym Sci 109:3714–3724CrossRefGoogle Scholar
  15. 15.
    Sirousazar M, Kokabi M, Hassan ZM (2012) J Appl Polym Sci 123:50–58CrossRefGoogle Scholar
  16. 16.
    Haraguchi K, Takehisa T (2002) Adv Mater 14:1120–1124CrossRefGoogle Scholar
  17. 17.
    Sirousazar M, Kokabi M, Hassan ZM, Bahramian AR (2012) J Appl Polym Sci 125:122–130CrossRefGoogle Scholar
  18. 18.
    Kang S, Zhao Y, Wang W, Zhang T, Chen T, Yi H, Rao F, Song S (2018) Appl Surf Sci 448:203–211CrossRefGoogle Scholar
  19. 19.
    Lee WF, Fu YT (2003) J Appl Polym Sci 89:3652–3660CrossRefGoogle Scholar
  20. 20.
    Sirousazar M, Taleblou N, Roufegari-Nejad E (2019) Hydrogel and nanocomposite hydrogel drug-delivery systems for treatment of cancers. In: Holban AM, Grumezescu AM (eds) Materials for biomedical engineering: nanomaterials-based drug delivery. Elsevier, Amsterdam, pp 287–316CrossRefGoogle Scholar
  21. 21.
    Sirousazar M, Kokabi M, Hassan ZM, Bahramian AR (2012) J Macromol Sci B 51:1335–1350CrossRefGoogle Scholar
  22. 22.
    Sirousazar M, Kokabi M, Hassan ZM, Bahramian AR (2012) J Macromol Sci B 51:1583–1595CrossRefGoogle Scholar
  23. 23.
    Jahani-Javanmardi A, Sirousazar M, Shaabani Y, Kheiri F (2016) J Biomater Sci Polym Ed 27:1262–1276CrossRefGoogle Scholar
  24. 24.
    Sirousazar M, Jahani-Javanmardi A, Kheiri F, Hassan ZM (2016) J Biomater Sci Polym Ed 27:1569–1583CrossRefGoogle Scholar
  25. 25.
    Hu XS, Liang R, Sun G (2018) J Mater Chem A 6:17612–17624CrossRefGoogle Scholar
  26. 26.
    Zhuang Y, Yu F, Chen J, Ma J (2016) J Environ Chem Eng 4:147–156CrossRefGoogle Scholar
  27. 27.
    Mahdavinia GR, Bazmizeynabad F (2014) Polym Plast Technol Eng 53:411–422CrossRefGoogle Scholar
  28. 28.
    Mahdavinia GR, Soleymani M, Sabzi M, Azimi H, Atlasi Z (2017) J Environ Chem Eng 5:2617–2630CrossRefGoogle Scholar
  29. 29.
    Shaabani Y, Sirousazar M, Kheiri F (2016) J Macromol Sci B 55:849–865CrossRefGoogle Scholar
  30. 30.
    Shaabani Y, Sirousazar M, Kheiri F (2016) Appl Clay Sci 126:287–296CrossRefGoogle Scholar
  31. 31.
    Yen HY (2016) Desalin Water Treat 57:20430–20438CrossRefGoogle Scholar
  32. 32.
    Rashidzadeh A, Olad A, Salari D (2015) Fibers Polym 16:354–362CrossRefGoogle Scholar
  33. 33.
    Pundir R, Chary GHVC, Dastidar MG (2018) Water Resour Ind 20:83–92CrossRefGoogle Scholar
  34. 34.
    Zolfaghari G, Esmaili-Sari A, Anbia M, Younesi H (2011) J Hazard Mater 192:1046–1055CrossRefGoogle Scholar
  35. 35.
    Kumar S, Chary GHVC, Dastidar MG (2015) Fuel 141:9–16CrossRefGoogle Scholar
  36. 36.
    Mittal H, Maity A, Ray SS (2015) Chem Eng J 279:166–179CrossRefGoogle Scholar
  37. 37.
    Wang W, Zhao Y, Bai H, Zhang T, Ibarra-Galvan V, Song S (2018) Carbohydr Polym 198:518–528CrossRefGoogle Scholar
  38. 38.
    Wang W, Zhao Y, Yi H, Chen T, Kang S, Li H, Song S (2018) Nanotechnology 29:025605CrossRefGoogle Scholar
  39. 39.
    Hosseinzadeh H, Khoshnood N (2016) Desalin Water Treat 57:6372–6383CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Chemical EngineeringUrmia University of TechnologyUrmiaIran
  2. 2.Material Engineering GroupUrmia University of TechnologyUrmiaIran

Personalised recommendations