Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 11, pp 2325–2333 | Cite as

Effect of the Processing-Induced Morphology on the Mechanical Properties of Biodegradable Extruded Films Based on Poly(lactic acid) (PLA) Blends

  • Mathilde Siccardi
  • Xoan Xosé Garcia-Fonte
  • Antoine Simon
  • Valeria Pettarin
  • María José Abad
  • Celina BernalEmail author
Original Paper
  • 37 Downloads

Abstract

Biodegradable films based on poly(lactic acid) blends were obtained by cast extrusion. Their tensile and fracture behavior was investigated and the effect of the processing conditions through the extrusion rolling speed on this behavior was analyzed. In uniaxial tensile tests, all films presented completely ductile behavior exhibiting a defined yield point, strain softening after this point and a plateau before fracture. Fracture behavior was determined through quasi-static fracture tests on deeply double edge notched tensile specimens. The film obtained at the lowest rolling speed exhibited completely ductile behavior hence, the Essential Work of Fracture methodology was applied to characterize its fracture. The film processed at intermediate rolling speed, on the other hand, presented ductile fracture or ductile instability depending on the ligament length and the film obtained with the highest rolling speed exhibited a transition regime fracture. In order to compare the fracture behavior of the different films, the J-integral at maximum load Jmax was adopted. Differences in the films fracture behavior were correlated to the processing-induced morphology.

Keywords

Biodegradable polymers Poly(lactic acid) Polymer blends Mechanical properties Processing-induced morphology 

Notes

Acknowledgements

The authors want to thank the National Research Council of Argentina (CONICET) and the University of Buenos Aires (UBACyT 20020130200282BA) for financial support of this investigation.

Compliance with Ethical Standards

Conflict of interest

The authors confirm that this article content has no conflict of interest.

References

  1. 1.
    Murariu M, Dubois P (2016) Adv Drug Deliv Rev 107:17CrossRefGoogle Scholar
  2. 2.
    Saeidlou S, Huneault MA, Li H, Park CB (2012) Prog Polym Sci 37:1657CrossRefGoogle Scholar
  3. 3.
    Santana OO, Rodríguez C, Belzunce J, Gámez-Pérez J, Carrasco F, Maspoch ML (2010) Polym Test 29:984CrossRefGoogle Scholar
  4. 4.
    Gamez-Perez J (2010) eXPRESS Polym Lett 5:82CrossRefGoogle Scholar
  5. 5.
    Arakawa K, Mada T, Park S-D, Todo M (2006) Polym Test 25:628CrossRefGoogle Scholar
  6. 6.
    Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M (2007) Macromolecules 40:9463CrossRefGoogle Scholar
  7. 7.
    Takayama T, Todo M, Tsuji H (2011) J Mech Behav Biomed Mater 4:255CrossRefGoogle Scholar
  8. 8.
    Hamad K, Kaseem M, Ayyoo M, Joo J, Deri F (2018) Prog Polym Sci 85:83CrossRefGoogle Scholar
  9. 9.
    Shirahase T, Komatsu Y, Tominaga Y, Asai S, Sumita M (2006) Polymer 47:4839CrossRefGoogle Scholar
  10. 10.
    Oyama HT (2009) Polymer 50:747CrossRefGoogle Scholar
  11. 11.
    Hamad K, Kaseem M, Deri F, Ko YG (2016) Mater Lett 164:409CrossRefGoogle Scholar
  12. 12.
    Feng F, Ye L (2010) J Macromol Sci B 49:1117CrossRefGoogle Scholar
  13. 13.
    Bitinis N, Verdejo R, Cassagnau P, Lopez-Manchado MA (2011) Mater Chem Phys 129:823CrossRefGoogle Scholar
  14. 14.
    Rezgui F, Swistek M, Hiver JM, G’Sell C, Sadoun T (2005) Polymer 46:7370CrossRefGoogle Scholar
  15. 15.
    Todo M, Arakawa K, Tsuji H, Takenoshita Y (2004) In: Conference 2004, SEM X international congress & exposition on experimental & applied mechanics, Costa Mesa, CAGoogle Scholar
  16. 16.
    Todo M, Park S-D, Takayama T, Arakawa K (2007) Eng Fract Mech 74:1872CrossRefGoogle Scholar
  17. 17.
    Tuba F, Oláh L, Nagy P (2011) Eng Fract Mech 78:3123CrossRefGoogle Scholar
  18. 18.
    Imre B (2013) eXPRESS Polym Lett 8:2CrossRefGoogle Scholar
  19. 19.
    Paes SS, Yakimets I, Wellner N, Hill SE, Wilson RH, Mitchell JR (2010) Eur Polym J 46:2300CrossRefGoogle Scholar
  20. 20.
    Farah S, Anderson DG, Langer R (2016) Adv Drug Deliv Rev 107:367CrossRefGoogle Scholar
  21. 21.
  22. 22.
  23. 23.
    Sedlarik V, Otgonzul O, Kitano T, Gregorova A, Hrabalova M, Junkar I, Cvelbar U, Mozetic M, Saha P (2012) J Macromol Sci B 51:982CrossRefGoogle Scholar
  24. 24.
    Fischer EW, Sterzel HJ, Wegner G (1973) Kolloid-Zeitschrift and Zeitschrift Fur Polymere 251:980CrossRefGoogle Scholar
  25. 25.
    Fambri L, Migliaresi C (2010) In: Auras R, Lim L-T, Selke S, Tsuji H (eds) Poly(lactic acid). Synthesis, structures, properties, processing, and applications. Wiley, Hoboken, p 113CrossRefGoogle Scholar
  26. 26.
    Plati E, Williams JG (1975) Polym Eng Sci 15:470CrossRefGoogle Scholar
  27. 27.
    Bernal C, Rink M, Frontini P (1999) Macromol Symposia 147:235CrossRefGoogle Scholar
  28. 28.
    Grellmann W, Reincke K (2004) Mater Test 46:168CrossRefGoogle Scholar
  29. 29.
    Cotterell C, Reddel JK (1997) Int J Fract 13:267Google Scholar
  30. 30.
    Mai Y-W, Cotterell B (1986) Int J Fract 32:105CrossRefGoogle Scholar
  31. 31.
    Wu J, Mai Y-W (1996) Polym Eng Sci 36:2275CrossRefGoogle Scholar
  32. 32.
    Luna P, Bernal C, Cisilino A, Frontini P, Cotterell B, Mai Y-W (2003) Polymer 44:1145CrossRefGoogle Scholar
  33. 33.
    Wu J, Mai Y-W, Cotterell B (1993) J Mater Sci 28:3373CrossRefGoogle Scholar
  34. 34.
    Clutton E (2001) In: Moore DR, Pavan A, Williams JG (eds) Fracture mechanics testing methods for polymers, adhesives and composites. European Structural Integrity Society, Elsevier, Amsterdam, p 177CrossRefGoogle Scholar
  35. 35.
    Mai Y-W, Powell P (1991) J Polym Sci B 29:785CrossRefGoogle Scholar
  36. 36.
    Paton CA, Hashemi S (1992) J Mater Sci 27:2279CrossRefGoogle Scholar
  37. 37.
    Saleemi AS, Nairn JA (1990) Polym Eng Sci 30:211CrossRefGoogle Scholar
  38. 38.
    Levita G, Parisi L, Marchetti A (1994) J Mater Sci 29:4545CrossRefGoogle Scholar
  39. 39.
    Struik LGE (1978) Physical aging in amorphous polymers and other materials. Elsevier, AmsterdamGoogle Scholar
  40. 40.
    Menczel JD, Prime RB, Gallagher PK (2009) In: Menczel JD, Prime RB (eds) Thermal analysis of polymers—fundamentals and applications. Wiley, Hoboken, p 7CrossRefGoogle Scholar
  41. 41.
    Lim L-T, Auras R, Rubino M (2008) Prog Polym Sci 33:820CrossRefGoogle Scholar
  42. 42.
    Joseph S, Deenadayalan E, Mahanwar PA (2015) J Polym Environ 23:321CrossRefGoogle Scholar
  43. 43.
    Yin H-M, Xu H, Zhang J, Chen J-B, Lei J, Xu J-Z, Li Z-M (2015) RSC Adv 5:69016CrossRefGoogle Scholar
  44. 44.
    Martinez AB, Gamez-Perez J, Sanchez-Soto M, Velasco JI, Santana OO, Maspoch ML (2009) Eng Fail Anal 16:2604CrossRefGoogle Scholar
  45. 45.
    Karger-Kocsis J, Khumalo VM, Bárány T, Mészáros L, Pegoretti A (2013) Compos Interfaces 20:395CrossRefGoogle Scholar
  46. 46.
    Todo M, Takayama T (2011) In: Pignatello R (ed) Biomaterials—physics and chemistry. InTech, Rijeka, p 375Google Scholar
  47. 47.
    Cotterell B, Chi JYH, Hbaie K (2007) Eng Fract Mech 74:1054CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universidad de Buenos Aires, Facultad de IngenieríaBuenos AiresArgentina
  2. 2.Grupo de Propiedades Mecánicas y Fractura, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET)Universidad de Buenos Aires, Facultad de IngenieríaBuenos AiresArgentina
  3. 3.Grupo de Polímeros, Universidad de A Coruña, Centro de Investigaciones TecnológicasEscuela Universitaria PolitécnicaFerrolSpain
  4. 4.Grupo de Ciencia e Ingeniería de PolímerosINTEMA (UNMdP-CONICET)Mar del PlataArgentina

Personalised recommendations