Journal of Polymers and the Environment

, Volume 27, Issue 11, pp 2380–2394 | Cite as

Gelatin/Gelatinized Sago Starch Biomembranes as a Drug Delivery System Using Rubber Latex as Plasticizer

  • Suchipha Wannaphatchaiyong
  • Jirapornchai Suksaeree
  • Rungtiwa Waiprib
  • Apassorn Kaewpuang
  • Wiriya Saelee
  • Wiwat PichayakornEmail author
Original paper


Preparation and properties of gelatin and gelatin/gelatinized sago starch biomembranes as a drug delivery system are presented. Deproteinized natural rubber latex (DNRL) was chosen to blend as a plasticizer in biomembranes due to its elasticity. The opaque biomembranes were formed, and the effect of DNRL amounts (10–50 part per hundred of gelatin; phg) on mechanical properties of biomembranes was investigated. It was discovered that increasing the amounts of DNRL could decrease the brittleness of biomembranes. However, these DNRL blended biomembranes still swelled, dissolved in water, and eroded within 2 h. The 50 phg DNRL was further chosen for biomembrane preparations. Then, the 5–30 phg gelatinized sago starch which was prepared in-house was added. These gelatin/gelatinized sago starch biomembranes were homogenous and opaque. They portrayed good water uptake properties, and the highest values occurred in 20–30 min, then these biomembranes eroded slowly. Increasing the amounts of sago starch in biomembranes raised the water uptake rates but reduced the erosion properties. Biomembranes with and without starch blends showed the same tensile strengths. Their elongations at break increased when the amounts of starch were raised but still were lower than that of gelatin/DNRL biomembranes. The morphology, scanning electron microscopy, atomic force electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimeter, and X-ray diffractometer confirmed the compatibility of ingredients in biomembranes. Lidocaine and its hydrochloride salt were successfully incorporated in these biomembranes with good properties. The drug release and permeation of biomembrane showed good drug controlled release and were able to permeate through the pig skin.


Gelatin Sago starch Natural rubber latex Biomembranes Drug delivery 



The authors would like to thank the Natural Rubber Innovation Research Institute (NR-IRI), Prince of Songkla University, for research financial support (Grant No. PHA590307S) and Prince of Songkla University for facilities support. The first author gratefully acknowledges the grant support provided by the Ph.D. scholarship of Prince of Songkla Univesity and the Scholarship Awards for Thai Ph.D. Students under Thailand’s Education Hub for Southern Region of ASEAN Countries. In addition, sincere thanks are sent to Miss Maria Suzanne Mullet for her diligent proof-reading of this paper.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Riyajan S, Patisat S (2018) J Polym Environ 26:2845–2854Google Scholar
  2. 2.
    Sukhlaaied W, Riyajan S (2018) J Polym Environ 26:2708–2719Google Scholar
  3. 3.
    Díaz O, Candia D, Cobos A̒ (2017) Int Dairy J 73:84–91Google Scholar
  4. 4.
    Chen H, Hu X, Chen E, Wu S, McClements DJ, Liu S et al (2016) Food Hydrocoll 61:662–671Google Scholar
  5. 5.
    Yadav P, Yadav H, Shah VG, Shah G, Dhaka G (2015) J Clin Diagn Res 9(9):ZE21–ZE25PubMedPubMedCentralGoogle Scholar
  6. 6.
    Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Eur Polym J 47:254–263Google Scholar
  7. 7.
    Jongjareonrak A, Benjakul S, Visessanguan W, Prodpran T, Tanaka M (2006) Food Hydrocoll 20(4):492–501Google Scholar
  8. 8.
    Promsopha T, Baimark Y (2014) Int J Biomater. CrossRefGoogle Scholar
  9. 9.
    Achet D, He XW (1995) Polymer 36(4):787–791Google Scholar
  10. 10.
    Jadhav RT, Kasture PV, Gattani SG, Surana SJ (2009) Int J ChemTech Res 1(4):1507–1511Google Scholar
  11. 11.
    Subramanian K, Indumathi S, Vijayakumar V (2014) Int J Pharm Sci Res 5(2):438–447Google Scholar
  12. 12.
    Mazzitelli S, Pagano C, Giusepponi D, Nastruzzi C, Perioli L (2013) Int J Pharm 454(1):447–457Google Scholar
  13. 13.
    Ling MH, Chen MC (2013) Acta Biomater 9(11):8952–8961PubMedGoogle Scholar
  14. 14.
    Satyam G, Shivani S, Shivam G, Shobhit J, Sanjeev V, Arvind K (2010) IJBPR 1:56–60Google Scholar
  15. 15.
    Alves VD, Mali S, Bele̒ia A, Grossmann MVE (2007) J Food Eng 78:941–946Google Scholar
  16. 16.
    Noel TR, Ring SG, Wittam MA (1993) In: Dickinson E, Walstra P (eds) Food colloids and polymers: stability and mechanical properties. Woodhead Publishing Limited, Cambridge, p 126Google Scholar
  17. 17.
    Karim AA, Tie APL, Manan DMA, Zaidul ISM (2008) CRFSFS 7(3):215–228Google Scholar
  18. 18.
    Boonme P, Pichayakorn W, Prapruit P, Boromthanarat S (2012) 2nd ASEAN Sago Symposium 2012, advances in Sago research and development, p 24Google Scholar
  19. 19.
    Al-Hassan AA, Norziah MH (2012) Food Hydrocoll 26:108–117Google Scholar
  20. 20.
    Zhong QP, Xia WS (2008) Food Technol Biotech 46:262–269Google Scholar
  21. 21.
    Rodríguez M, Osés J, Ziani K, Maté JI (2006) Food Res Int 39:840–846Google Scholar
  22. 22.
    Simchareon W, Amnuaikit T, Boonme P, Taweepreda W, Pichayakorn W (2012) Procedia Chem 4:308–312Google Scholar
  23. 23.
  24. 24.
    Hirata Y, Kondo H, Ozawa Y (2014) In: Kohjiya S, Ikeda Y (eds) Chemistry, manufacture and applications of natural rubber. Woodhead Publishing Limited, Cambridge, pp 325–352Google Scholar
  25. 25.
    Hasma H, Alias O, Fauzi MS (2003) J Rubber Res 6(4):231–240Google Scholar
  26. 26.
    Panrat K, Boonme P, Taweedreda W, Pichayakorn W (2012) Procedia Chem 4:322–327Google Scholar
  27. 27.
    Floriano JF, de Barros NR, Cinman JLF, da Silva RG, Loffredo AV, Borges FA et al (2018) J Polym Environ 26:2281–2289Google Scholar
  28. 28.
    Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC (2012) J Membr Sci 411–412:81–90Google Scholar
  29. 29.
    Deval R, Ramesh V, Prasad G, Jain AK (2008) Indian J Dermatol Venereol Leprol 74:304–310PubMedGoogle Scholar
  30. 30.
    Pichayakorn W, Suksaeree J, Boonme P, Ammuaikit T, Taweepreda W, Ritthidej CG (2013) Pharmaceut Dev Technol 18:1111–1121Google Scholar
  31. 31.
    Waiprib R, Boonme P, Taweepreda W, Kalkornsurapranee E, Suksaeree J, Pichayakorn W (2017) Monatsh Chem 148:1223–1228Google Scholar
  32. 32.
    Banpean A, Paradee N, Sirivat A, Niamlang S (2018) J Polym Environ 9:3745–3753Google Scholar
  33. 33.
    Suksaeree J, Boonme P, Taweepreda W, Ritthidej GC, Pichayakorn W (2012) Chem Eng Res Des 90:906–914Google Scholar
  34. 34.
    Kaewbanjong J, Amnuaikit T, Souto EB, Boonme P (2018) Skin Pharmacol Physiol 31:292–297PubMedGoogle Scholar
  35. 35.
    Boonme P, Boonthongchuay C, Wongpoowarak W, Amnuaikit T (2016) Pharmaceut Dev Technol 21(1):116–120Google Scholar
  36. 36.
    Songkro S, Purwo Y, Becket G, Rades T (2003) STP Pharma Sci 13:133–139Google Scholar
  37. 37.
    Ibrahim A, Dahlan M (1988) Prog Polym Sci 23(4):665–706Google Scholar
  38. 38.
    Wattanachant S, Muhammad SKS, Mat Hashim D, Rahman RA (2002) Songklanakarin J Sci Technol 24(3):431–438Google Scholar
  39. 39.
    Sjöqvist M, Boldizar A, Rigdahl M (2010) J Cell Plast 46(6):497–517Google Scholar
  40. 40.
    Białopiotrowicz T (2003) Food Hydrocoll 17(2):141–147Google Scholar
  41. 41.
    de Oliveira Reis G, Menut P, Bonfils F, Vaysse L, Hemar Y, Sanchez C (2015) Colloids Surf A 482:9–17Google Scholar
  42. 42.
    Asma C, Meriem E, Mahmoud B, Djaafer B (2014) J Chil Chem Soc 59:2279–2283Google Scholar
  43. 43.
    Zhang N, Liu X, Yu L, Shanks R, Retinaks E, Liu H (2013) Carbohydr Polym 95:649–653PubMedGoogle Scholar
  44. 44.
    Abu-Huwaij R, Assaf S, Salem M, Sallam A (2007) Drug Dev Ind Pharm 33:855–864PubMedGoogle Scholar
  45. 45.
    da Cruz AGB, Góes JC, Figueiró SD, Feitosa JPA, Ricardo NMPS, Sombra ASB (2003) Eur Polym J 39:1267–1272Google Scholar
  46. 46.
    Tainter CJ, Ni Y, Shi L, Skinner JL (2013) J Phys Chem Lett 4(1):12–17PubMedGoogle Scholar
  47. 47.
    Singh N, Singh J, Kaur L, Sodhi NS, Gill BS (2003) Food Chem 81:219–231Google Scholar
  48. 48.
    Sansuk C (2016) Master’s thesis. Thammasat UniversityGoogle Scholar
  49. 49.
    Okazaki M (2018) In: Ehara H, Toyoda Y, Johnson D (eds) Sago palm. Springer, Singapore, pp 247–259Google Scholar
  50. 50.
    Pichayakorn W, Boontawee H, Taweepreda W, Suksaeree J, Boonme P (2014) Ind Eng Chem Res 53(4):1672–1677Google Scholar
  51. 51.
    Preis M, Woertz C, Schneider K, Kukawka J, Broscheit J, Roewer N, Breitkreutz J (2014) Eur J Pharm Biopharm 86(3):552–561PubMedGoogle Scholar
  52. 52.
    Hu C, Liu Y (2011) In: Isin A (ed) Wide spectra of quality control. IntechOpen, London, p 185Google Scholar
  53. 53.
    Kadioglu Y, Atila A, Gultekin MS, Alp NA (2013) Iran J Pharm Res 12(4):659–669PubMedPubMedCentralGoogle Scholar
  54. 54.
    Liu X, Ma X, Kun E, Guo X, Yu Z, Zhang F (2018) Int J Pharm 547:291–302PubMedGoogle Scholar
  55. 55.
    Banks SL, Pinninti RR, Gill HS, Crooks PA, Prausnitz MR, Stinchcomb AL (2008) Pharm Res 25(7):1677–1685PubMedPubMedCentralGoogle Scholar
  56. 56.
    Küpper TE, Schraut B, Rieke B, Hemmerling AV, Schöffl V, Steffgen J (2006) J Travel Med 13:35–47PubMedGoogle Scholar
  57. 57.
    Goto S, Itano T (1978) Yakugaku Zasshi 99:146–154Google Scholar
  58. 58.
    Powell MF (1987) Pharm Res 4:42–45PubMedGoogle Scholar
  59. 59.
    Singh J, Gupta S, Kaur H (2011) Trends Appl Sci Res 6(4):400–409Google Scholar
  60. 60.
    Dash S, Murthy PN, Nath L, Chowdhury P (2010) Acta Pol Pharm 67(3):217–223PubMedGoogle Scholar
  61. 61.
    Boix-Montañes A (2004) J Drug Deliv Sci Technol 14(6):485–488Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical Technology, Faculty of Pharmaceutical SciencesPrince of Songkla UniversitySongkhlaThailand
  2. 2.Department of Pharmaceutical Chemistry, College of PharmacyRangsit UniversityPathum ThaniThailand

Personalised recommendations