Advertisement

Green Synthesis of Aluminium Oxide Nanoparticles and its Applications in Mechanical and Thermal Stability of Hybrid Natural Composites

  • K. R. SumeshEmail author
  • K. Kanthavel
Original paper
  • 11 Downloads

Abstract

In the current scenario, biosynthesis has a major trend in the world due to its eco-friendly approach, effectiveness and low cost. In this experiment Aluminium Oxide nano powder was extracted from ‘Muntingia Calabura’ leaf with aluminium nitrate as precursor. An attempt has been made to develop the properties of sisal/coir, sisal/banana and banana/coir based hybrid composite with addition of aluminium oxide (Al2O3) nano powder. Compression moulding technique was adapted to fabricate the epoxy based natural fiber composites. Nano Al2O3 powder was added in 0, 1, 2 and 3 wt%. The results demonstrate that addition of nano powder up to 3 weight (wt) percentage improvise the tensile, flexural and impact properties for all incorporated hybrid fibers. Residual wt% for sisal/coir, sisal/banana and banana/coir hybrid composites enhanced from 27.15 to 29.14, 26.07 to 31.33% and 23.76 to 27.50% by 3% nano substitution. Degradation temperature improved in different stages of hybrid combinations. Scanning electron microscope (SEM) images clearly showed the reduction of fiber breakage, matrix breakage and void gaps due to alumina nano powder addition.

Keywords

Biosynthesis Hybrid composite Mechanical properties Compression moulding technique Thermal analysis 

Notes

Funding

There was no funding for this project.

References

  1. 1.
    Lee JM, Ishak ZAM, Taib RM et al (2013) Mechanical, thermal and water absorption properties of Kenaf-fiber-based polypropylene and poly (butylene succinate) composites. J Polym Environ 21:293–302.  https://doi.org/10.1007/s10924-012-0516-4 CrossRefGoogle Scholar
  2. 2.
    Cordeiro EP, Pita VJRR, Soares BG (2016) Epoxy—fiber of peach palm trees composites: the effect of composition and fiber modification on mechanical and dynamic mechanical properties. J Polym Environ 25:913–924.  https://doi.org/10.1007/s10924-016-0841-0 CrossRefGoogle Scholar
  3. 3.
    Prachayawarakorn J, Ruttanabus P (2011) Effect of cotton fiber contents and lengths on properties of thermoplastic starch composites prepared from rice and waxy rice starches. J Polym Environ 19:274–282.  https://doi.org/10.1007/s10924-010-0273-1 CrossRefGoogle Scholar
  4. 4.
    Jaafar J, Parlaungan J, Mohd S et al (2018) Influence of selected treatment on tensile properties of short pineapple leaf fiber reinforced tapioca resin biopolymer composites. J Polym Environ 26:4271–4281.  https://doi.org/10.1007/s10924-018-1296-2 CrossRefGoogle Scholar
  5. 5.
    Li M, Duncan L (2017) Enhancement of mechanical properties of bio-resin epoxy/flax fiber composites using acetic anhydride. J Polym Environ 26:224–234.  https://doi.org/10.1007/s10924-017-0943-3 Google Scholar
  6. 6.
    Mwaikambo LY, Ansell MP, Dufresne A et al (2001) Review current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2131.  https://doi.org/10.1023/A:1017512029696 CrossRefGoogle Scholar
  7. 7.
    Yang Y, Ota T, Morii T (2011) Mechanical property and hydrothermal aging of injection molded jute/polypropylene composites. J Mater Sci 46:2678–2684.  https://doi.org/10.1007/s10853-010-5134-8 CrossRefGoogle Scholar
  8. 8.
    Prasad SV, Pavithran C (1983) Alkali treatment of coir fibres for coir-polyester composites. J Mater Sci 18:1443–1454.  https://doi.org/10.1007/BF01111964 CrossRefGoogle Scholar
  9. 9.
    Liang S, Nouri H, Lafranche E (2015) Thermo-compression forming of flax fibre-reinforced polyamide 6 composites: influence of the fibre thermal degradation on mechanical properties. J Mater Sci 50:7660–7672.  https://doi.org/10.1007/s10853-015-9330-4 CrossRefGoogle Scholar
  10. 10.
    Venkateshwaran N, Elayaperumal A, Alavudeen A, Thiruchitrambalam M (2011) Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Mater Des 32:4017–4021.  https://doi.org/10.1016/j.matdes.2011.03.002 CrossRefGoogle Scholar
  11. 11.
    Siddika S, Mansura F, Hasan M, Hassan A (2014) Effect of reinforcement and chemical treatment of fiber on the properties of jute–coir fiber reinforced hybrid polypropylene composites. Fibers and Polymers 15:1023–1028.  https://doi.org/10.1007/s12221-014-1023-0 CrossRefGoogle Scholar
  12. 12.
    Saw SK, Sarkhel G, Choudhury A (2012) Effect of layering pattern on the physical, mechanical, and thermal properties of jute/bagasse hybrid fiber-reinforced epoxy novolac composites. Polym Compos 33:1824CrossRefGoogle Scholar
  13. 13.
    Gan P, Garbizu S, Llano-ponte R (2005) Surface modification of sisal fibers: effects on the mechanical and thermal properties of their epoxy. Polym Compos 26:121–127.  https://doi.org/10.1002/pc.20083 CrossRefGoogle Scholar
  14. 14.
    Prasad CV, Sudhakara P, Prabhakar MN et al (2016) An investigation on the effect of silica aerogel content on thermal and mechanical properties of sisal/PLA nano composites. Polym Compos 39:835–840CrossRefGoogle Scholar
  15. 15.
    Jarukumjorn K, Suppakarn N (2009) Effect of glass fiber hybridization on properties of sisal fiber–polypropylene composites. Compos B 40:623–627.  https://doi.org/10.1016/j.compositesb.2009.04.007 CrossRefGoogle Scholar
  16. 16.
    Boopalan M, Niranjanaa M, Umapathy MJ (2013) Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos B 51:54–57.  https://doi.org/10.1016/j.compositesb.2013.02.033 CrossRefGoogle Scholar
  17. 17.
    Young J, Kyeong T, Jin H et al (2012) Thermal stability and flammability of coconut fiber reinforced poly (lactic acid) composites. Compos B 43:2434–2438.  https://doi.org/10.1016/j.compositesb.2011.11.003 CrossRefGoogle Scholar
  18. 18.
    Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P (2011) Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers Polym 12:919–926.  https://doi.org/10.1007/s12221-011-0919-1 CrossRefGoogle Scholar
  19. 19.
    Srinivasan VS, Boopathy SR, Sangeetha D, Ramnath BV (2014) Evaluation of mechanical and thermal properties of banana-flax based natural fibre composite. Mater Des 60:620.  https://doi.org/10.1016/j.matdes.2014.03.014 CrossRefGoogle Scholar
  20. 20.
    Dhakal HN, Zhang ZY, Guthrie R et al (2013) Development of flax/carbon fibre hybrid composites for enhanced properties. Carbohyd Polym 96:1.  https://doi.org/10.1016/j.carbpol.2013.03.074 CrossRefGoogle Scholar
  21. 21.
    Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos B 43:2883–2892.  https://doi.org/10.1016/j.compositesb.2012.04.053 CrossRefGoogle Scholar
  22. 22.
    Zhi M, Qiu M, Liu Y et al (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447.  https://doi.org/10.1016/S0266-3538(01)00046-X CrossRefGoogle Scholar
  23. 23.
    Rekha R, Tarun D (2012) Effect of nano SiO2 on properties of wood/polymer/clay nanocomposites. Wood Sci Technol 46:1151–1168.  https://doi.org/10.1007/s00226-012-0471-1 CrossRefGoogle Scholar
  24. 24.
    Deka BK, Maji TK (2011) Composites: part A effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite. Compos A 42:2117–2125.  https://doi.org/10.1016/j.compositesa.2011.09.023 CrossRefGoogle Scholar
  25. 25.
    Hps AK, Masri M, Saurabh CK, Fazita MR, Azniwati AA, Aprilia NS, Rosamah E, Dungani R (2017) Incorporation of coconut shell based nanoparticles in kenaf/coconut fibres reinforced vinyl ester composites. Mater Res Express 4(11):119501.  https://doi.org/10.1088/2053-1591/aa62ec CrossRefGoogle Scholar
  26. 26.
    Chaharmahali M, Hamzeh Y (2014) Effects of nano-graphene on the physico-mechanical properties of bagasse/polypropylene composites. Polym Bull 71:337–349.  https://doi.org/10.1007/s00289-013-1064-3 CrossRefGoogle Scholar
  27. 27.
    Liu C, Zhang AJ, He BY, Wang AP (2017) Al2O3 microspheres prepared by cathode plasma electrolysis. Aust J Chem 70:120–124.  https://doi.org/10.1071/CH16214 CrossRefGoogle Scholar
  28. 28.
    Andersson JM, Czigány Z, Jin P, Helmersson U (2007) Microstructure of α-alumina thin films deposited at low temperatures on chromia template layers. J Vac Sci Technol A 22:117.  https://doi.org/10.1116/1.1636157 CrossRefGoogle Scholar
  29. 29.
    Ansari MA, Khan HM (2015) Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa. World J Microbiol Biotechnol 31:153–164.  https://doi.org/10.1007/s11274-014-1757-2 CrossRefGoogle Scholar
  30. 30.
    Senthilkumar S, Rajendran A (2018) Biosynthesis of TiO2 nanoparticles using Justica gendarussa leaves for photocatalytic and toxicity studies. Res Chem Intermed 44:5923–5940.  https://doi.org/10.1007/s11164-018-3464-3 CrossRefGoogle Scholar
  31. 31.
    Sumesh KR, Kanthavel K, Vivek S (2019) Mechanical/thermal/vibrational properties of sisal, banana and coir hybrid natural composites by the addition of bio synthesized aluminium oxide nano powder. Mater Res Express 6:1–29.  https://doi.org/10.1088/2053-1591/aaff1a CrossRefGoogle Scholar
  32. 32.
    Shaik MR, Ali ZJ, Khan M, Kuniyil M, Assal ME, Alkhathlan HZ, Al-Warthan A, Siddiqui MR, Khan MASF (2017) Green synthesis and characterization of palladium nanoparticles using Origanum vulgare L. extract and their catalytic activity. Molecules 165:1–12.  https://doi.org/10.3390/molecules22010165 Google Scholar
  33. 33.
    Ahmed S, Ahmad M, Swami BL (2015) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9:1–7.  https://doi.org/10.1016/j.jrras.2015.06.006 Google Scholar
  34. 34.
    Vivek S, Kanthavel K (2018) Effect of bagasse ash filled epoxy composites reinforced with hybrid plant fibres for mechanical and thermal properties. Compos B 160:170–176.  https://doi.org/10.1016/j.compositesb.2018.10.038 CrossRefGoogle Scholar
  35. 35.
    Sumesh KR, Kanthavel K (2019) Synergy of fiber content, Al2O3 nanopowder, NaOH treatment and compression pressure on free vibration and damping behavior of natural hybrid-based epoxy composites. Polym Bull.  https://doi.org/10.1007/s00289-019-02823-x Google Scholar
  36. 36.
    Sumesh KR, Kanthavel K, Ajithram A, Nandhini P (2019) Bioalumina nano powder extraction and its applications for sisal, coir and banana hybrid fiber composites : mechanical and thermal properties. J Polym Environ.  https://doi.org/10.1007/s10924-019-01496-x Google Scholar
  37. 37.
    Ibrahim ID, Jamiru T, Sadiku RE et al (2016) Dependency of the mechanical properties of sisal fiber reinforced recycled polypropylene composites on fiber surface treatment, fiber content and nanoclay. J Polym Environ 25:427–434.  https://doi.org/10.1007/s10924-016-0823-2 CrossRefGoogle Scholar
  38. 38.
    Foulk JA, Chao WY, Akin DE et al (2006) Analysis of flax and cotton fiber fabric blends and recycled polyethylene composites. J Polym Environ 14:15–25.  https://doi.org/10.1007/s10924-005-8703-1 CrossRefGoogle Scholar
  39. 39.
    Li Xue, Lope G, Tabil SP (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33.  https://doi.org/10.1007/s10924-006-0042-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringAnna University Regional CampusCoimbatoreIndia

Personalised recommendations