Bio-based PA5.10 for Industrial Applications: Improvement of Barrier and Thermo-mechanical Properties with Rice Husk Ash and Nanoclay

  • Daniele BattegazzoreEmail author
  • Alberto Frache
Original paper


Composites consisting of renewable PA5.10 were obtained from melt compounding with a modified clay (CL) and/or a by-product obtained from the combustion of rice husk (RHA). Two different industrialized lab-scale machines were used to obtain the final shape: a film extrusion machine and an injection moulding apparatus. The industrial application requirements for polyamides generally need good barrier properties and high thermo-mechanical strength. Considering the barrier properties, the CL was able to decrease the oxygen permeability to less than half with respect to neat PA5.10. DMTA demonstrated that the addition of RHA caused a consistent enhancement (+ 46 °C) in the heat deflection temperature (HDT) compared to the neat PA5.10 matrix, increasing the possible areas of interest. Furthermore, the simultaneous presence of RHA and CL provided the best result reaching an extraordinary HDT of 131 °C. A complete discussion taking into account the morphology, crystallinity and filler-matrix adhesion evaluation was reported as well as comparison of performances with other bio-PAs composites. These two fillers can therefore be used separated or together combined in PA5.10 for functional purposes in a sustainable scenario.


Particle-reinforced composites Synergism Thermomechanical properties Injection moulding Extrusion 



The authors would like to thank Mr. Alberto Cisternino for the compounding of the materials.


  1. 1.
    European Bioplastic Association, Bioplastics Facts and Figures (2017). Accessed 3 Dec 2018
  2. 2.
    Pagacz J, Raftopoulos KN, Leszczyńska A, Pielichowski K (2016) J Therm Anal Calorim 123:1225. CrossRefGoogle Scholar
  3. 3.
    Ruehle DA, Perbix C, Castaneda M et al (2013) Polymer 54:6961. CrossRefGoogle Scholar
  4. 4.
    Al-Mulla A (2009) Int J Polym Anal Charact 14:540. CrossRefGoogle Scholar
  5. 5.
    Battegazzore D, Alongi J, Fontaine G, Frache A, Bourbigot S, Malucelli G (2015) RSC Adv 5:39424. CrossRefGoogle Scholar
  6. 6.
    Battegazzore D, Salvetti O, Frache A, Peduto N, De Sio A, Marino F (2016) Compos A 81:193. CrossRefGoogle Scholar
  7. 7.
    Feldmann M, Bledzki AK (2014) Compos Sci Technol 100:113. CrossRefGoogle Scholar
  8. 8.
    Yan MQ, Yang HJ (2012) Polym Compos 33:1770. CrossRefGoogle Scholar
  9. 9.
    Harmsen PFH, Hackmann MM, Bos HL (2014) Biofuels. Bioprod Biorefin 8:306. CrossRefGoogle Scholar
  10. 10.
    Wilbon PA, Chu F, Tang C (2013) Macromol Rapid Commun 34:8. CrossRefGoogle Scholar
  11. 11.
    Winnacker M, Rieger B (2015) Chemsuschem 8:2455. CrossRefGoogle Scholar
  12. 12.
    Winnacker M, Rieger B (2016) Macromol Rapid Commun 37:1391. CrossRefGoogle Scholar
  13. 13.
    Kim HT, Baritugo KA, Oh YH et al (2018) ACS Sustain Chem Eng 6:5296. CrossRefGoogle Scholar
  14. 14.
    Kuciel S, Kuzniar P, Liber-Knec A (2012) Polimery 57:627. CrossRefGoogle Scholar
  15. 15.
    Leszczyńska A, Stafin K, Pagacz J et al (2018) Ind Crops Prod 116:97. CrossRefGoogle Scholar
  16. 16.
    Kind S, Wittmann C (2011) Appl Microbiol Biotechnol 91:1287. CrossRefGoogle Scholar
  17. 17.
    Hasan MM, Zhou Y, Mahfuz H, Jeelani S (2006) Mater Sci Eng 429:181. CrossRefGoogle Scholar
  18. 18.
    Liu ZJ, Zhou PL, Yan DY (2004) J Appl Polym Sci 91:1834. CrossRefGoogle Scholar
  19. 19.
    Picard E, Vermogen A, Gerard JF, Espuche E (2007) J Membr Sci 292:133. CrossRefGoogle Scholar
  20. 20.
    Sadeghi F, Fereydoon M, Ajji A (2013) Adv Polym Technol 32:E53. CrossRefGoogle Scholar
  21. 21.
    Zierdt P, Weber A (2015) Processing and characterization of wood plastic composites from bio-based polyamide 11 and chemically modified beech fibers. Mater Sci Forum 825:1039–1046CrossRefGoogle Scholar
  22. 22.
    Battegazzore D, Frache A, Abt T, Maspoch ML (2017) Essential Work of Fracture of Bio-Polyamides and Clay Composites. In: Fractura SdGEd (ed) XXXIV ENCUENTRO DEL GRUPO ESPAÑOL DE FRACTURA. Secretaría del Grupo Español de Fractura, Santander, pp 349–354Google Scholar
  23. 23.
    Battegazzore D, Sattin A, Maspoch ML, Frache A (2019) Polym Compos 40:2617. CrossRefGoogle Scholar
  24. 24.
    Turmanova S, Genieva S, Vlaev L (2012) Int J Chem. Google Scholar
  25. 25.
    Chaudhary DS, Jollands MC, Cser F (2004) Adv Polym Technol 23:147. CrossRefGoogle Scholar
  26. 26.
    Ayswarya EP (2012) KF Vidya Francis, VS Renju, ET Thachil. Mater Des. Google Scholar
  27. 27.
    Arayapranee W, Na-Ranong N, Rempel GL (2005) J Appl Polym Sci 98:34. CrossRefGoogle Scholar
  28. 28.
    Siriwardena S, Ismail H, Ishiaku US (2003) J Reinf Plast Compos 22:1645. CrossRefGoogle Scholar
  29. 29.
    Fuad MYA, Ismail Z, Mansor MS, Ishak ZAM, Omar AKM (1995) Polym J 27:1002. CrossRefGoogle Scholar
  30. 30.
    Takemori MT (1979) Polym Eng Sci 19:1104. CrossRefGoogle Scholar
  31. 31.
  32. 32.
    Ciaperoni A, Mula A (2001) Pacini Editore. Chimica e tecnologia delle poliammidi, Pisa, p 154Google Scholar
  33. 33.
  34. 34.
    Battegazzore D, Noori A, Frache A (2018) J Compos Mater 53(6):783–797. CrossRefGoogle Scholar
  35. 35.
    Százdi L, Pozsgay A, Pukánszky B (2007) Eur Polym J 43:345. CrossRefGoogle Scholar
  36. 36.
    Atkinson J (1993) In: Corish Patrick J (ed) Concise encylopedia of polymer processing & applications. Pergamon Press, OxfordCrossRefGoogle Scholar
  37. 37.
    Oliver-Ortega H, Julian F, Espinach FX, Tarrés Q, Ardanuy M, Mutjé P (2019) J Cleaner Prod 226:64. CrossRefGoogle Scholar
  38. 38.
    Oliver-Ortega H, Granda LA, Espinach FX, Mendez JA, Julian F, Mutjé P (2016) Compos Sci Technol 132:123. CrossRefGoogle Scholar
  39. 39.
    Nikiforov AA, Vol’fson SI, Okhotina NA, Rinberg R, Hartmann T, Kroll L (2017) Russ Metall. Google Scholar
  40. 40.
    Armioun S, Panthapulakkal S, Scheel J, Tjong J, Sain M (2016) J Appl Polym Sci. Google Scholar
  41. 41.
    Battegazzore D, Bocchini S, Alongi J, Frache A (2014) RSC Adv 4:54703. CrossRefGoogle Scholar
  42. 42.
    Gupta A, Simmons W, Schueneman GT, Hylton D, Mintz EA (2017) ACS Sustain Chem Eng 5:1711. CrossRefGoogle Scholar
  43. 43.
    Della VP, Kühn I, Hotza D (2002) Mater Lett 57:818. CrossRefGoogle Scholar
  44. 44.
    Villaseñor P, Franco L, Subirana J, Puiggali J (1999) J Polym Sci B 37:2383.<2383::AID-POLB9>3.0.CO;2-G CrossRefGoogle Scholar
  45. 45.
    Seguela R (2005) J Macromol Sci C 45:263. CrossRefGoogle Scholar
  46. 46.
    Móczó J, Pukánszky B (2008) J Ind Eng Chem 14:535. CrossRefGoogle Scholar
  47. 47.
    Hári J, Horváth F, Renner K, Móczó J, Pukánszky B (2018) Polym Test 72:178. CrossRefGoogle Scholar
  48. 48.
    Shelley J, Mather P, DeVries K (2001) Polymer 42:5849. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, sede di AlessandriaAlessandriaItaly

Personalised recommendations