Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 11, pp 2352–2359 | Cite as

Waste Eggshells for the Decoration of Carbon Nanotubes and Graphene Nanosheets with Hydroxyapatite for Preparation of LLDPE Nanocomposites

  • Bhushan C. Chaudhari
  • Jitendra Khanderay
  • Chandrashekhar Patil
  • Amardip M. Patil
  • Sachin A. Joshi
  • Vijay Singh
  • Krushna Kaduba Palodkar
  • Annadanam V. Sesha Sainath
  • Vikas V. GiteEmail author
  • Harishchandra D. JirimaliEmail author
Original paper
  • 49 Downloads

Abstract

Waste eggshells were used to decorate functionalized carbon nanotubes (CNT) and graphene oxide (GO) by hydroxyapatite (HAP) using in situ synthesis. The HAP decorated CNT and GO were characterized by X-ray diffraction, SEM, and IR spectroscopic techniques. CNT-HAP and GO-HAP were further used to prepare polymer nanocomposites by addition of different percentages of synthesized CNT-HAP and GO-HAP as fillers into linear low density polyethylene (LLDPE). The prepared nanocomposites specimens were utilized for physical and thermo-mechanical analysis. Mechanical properties of the LLDPE nanocomposites were improved with increasing the percentage of CNT-HAP and GO-HAP fillers compared to the pristine LLDPE. Hardness of hybrid-CNT-HAP/LLDPE composite was increased as compared to the GO-HAP/LLDPE, where as tensile strength of the GO-HAP/LLDPE was higher than that of the CNT-HAP/LLDPE composite. Flammability of CNT-HAP and GO-HAP composites was decreased by 32% as compared to the pristine LLDPE.

Graphic Abstract

Keywords

Hydroxyapatite Carbon nanotube Graphene oxide LLDPE Polymer nanocomposite Waste eggshells 

Notes

Acknowledgement

This work is supported by the SERB New Delhi Govt. of India startup research grant awarded to Dr. H. D. Jirimali File No. SB/FT/CS–037/2014.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

References

  1. 1.
    Wang Y et al (2004) Crystallization in the thin and ultrathin films of poly(ethylene-vinyl acetate) and linear low-density polyethylene. Macromolecules 37:3319–3327CrossRefGoogle Scholar
  2. 2.
    Tornuk F, Hancer M, Sagdic O, Yetim H (2015) LLDPE based food packaging incorporated with nanoclays grafted with bioactive compounds to extend shelf life of some meat products. LWT Food Sci Technol 64:540–546CrossRefGoogle Scholar
  3. 3.
    KratofilKrehula L, Katančić Z, Marić G, Hrnjak-Murgić Z (2015) Study of fire retardancy and thermal and mechanical properties of HDPE-wood composites. J Wood Chem Technol 35:412–423CrossRefGoogle Scholar
  4. 4.
    Gao Y et al (2014) Synthesis of highly efficient flame retardant high-density polyethylene nanocomposites with inorgano-layered double hydroxides as nanofiller using solvent mixing method. ACS Appl Mater Interfaces 6:5094–5104CrossRefGoogle Scholar
  5. 5.
    Panupakorn P, Chaichana E, Praserthdam P, Jongsomjit B (2013) Polyethylene/Clay nanocomposites produced by in situ polymerization with zirconocene/MAO catalyst. J. Nanomater. 2013:1–9CrossRefGoogle Scholar
  6. 6.
    Jongsomjit B, Chaichana E, Praserthdam P (2005) LLDPE/nano-silica composites synthesized via in situ polymerization of ethylene/1-hexene with MAO/metallocene catalyst. J Mater Sci 40:2043–2045CrossRefGoogle Scholar
  7. 7.
    Adeosun S, Usman M (2014) Characterization of LDPE reinforced with calcium carbonate—fly ash hybrid filler. J Miner 2:334–345Google Scholar
  8. 8.
    Lino AS, Mendes LC, França D De, Malm O (2015) High density polyethylene and zirconium phosphate nanocomposites. Polímeros 25:477–482CrossRefGoogle Scholar
  9. 9.
    Guan YH, Huang JQ, Yang JC, Shao ZB, Wang YZ (2015) An effective way to flame-retard biocomposite with ethanolamine modified ammonium polyphosphate and its flame retardant mechanisms. Ind Eng Chem Res 54:3524–3531CrossRefGoogle Scholar
  10. 10.
    Wang M et al (2015) Transparent aqueous Mg(OH)2 nanodispersion for transparent and flexible polymer film with enhanced flame-retardant property. Ind Eng Chem Res 54:12805–12812CrossRefGoogle Scholar
  11. 11.
    Ghani SA, Young HC (2010) Conductive polymer based on Polyaniline–Eggshell powder (PANI-ESP) Composites. J Phys Sci 21:81–97Google Scholar
  12. 12.
    Barrera CS, Cornish K (2015) Novel mineral and organic materials from agro-industrial residues as fillers for natural rubber. J Polym Environ 23:437–448CrossRefGoogle Scholar
  13. 13.
    Taylor P et al (2013) Application of calcined eggshell powder as functional filler for high density polyethylene. Polym Plast Technol Eng 2559:37–41Google Scholar
  14. 14.
    Cree D, Rutter A (2015) Sustainable bio-inspired limestone eggshell powder for potential industrialized applications. ACS Sustain Chem Eng 3:941–949CrossRefGoogle Scholar
  15. 15.
    Salih SE, Hamood AF, AbdAlsalam AH (2013) Comparison of the characteristics of LDPE: PP and HDPE: PP polymer blends. Mod Appl Sci 7:33–42CrossRefGoogle Scholar
  16. 16.
    Wu SC, Hsu HC, Hsu SK, Chang YC, Ho WF (2016) Synthesis of hydroxyapatite from eggshell powders through ball milling and heat treatment. J Asian Ceram Soc 4:85–90CrossRefGoogle Scholar
  17. 17.
    Rivera EM et al (1999) Synthesis of hydroxyapatite from eggshells. Mater Lett 41:128–134CrossRefGoogle Scholar
  18. 18.
    Demirel M, Aksakal B (2016) The synthesis of eggshell-derived nano- and microscale hydroxyapatite bioceramic bone grafts. J Sol-Gel Sci Technol 78:126–134CrossRefGoogle Scholar
  19. 19.
    Abdulrahman I et al (2014) From garbage to biomaterials: an overview on egg shell based hydroxyapatite. J Mater 2014:6Google Scholar
  20. 20.
    Pramanik N et al (2009) Chemical synthesis, characterization, and biocompatibility study of hydroxyapatite/chitosan phosphate nanocomposite for bone tissue engineering applications. Int J Biomater 2009:1–8CrossRefGoogle Scholar
  21. 21.
    Cook SD, Thomas KA, Kay JF, Jarcho M (1988) Hydroxyapatite-coated titanium for orthopedic implant applications. Clin Orthop Related Res 232:225–243Google Scholar
  22. 22.
    Rončevic IS, Grubač Z, Metikoš-Huković M (2014) Electrodeposition of hydroxyapatite coating on AZ91D alloy for biodegradable implant application. Int J Electrochem Sci 9:5907–5923Google Scholar
  23. 23.
    Lu X et al (2011) Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition. J R Soc Interface 8:529–539CrossRefGoogle Scholar
  24. 24.
    Mikociak D, Blazewicz S, Michalowski J (2012) Biological and mechanical properties of nanohydroxyapatite-containing carbon/carbon composites. Int J Appl Ceram Technol 9:468–478CrossRefGoogle Scholar
  25. 25.
    Constanda S et al (2016) Carbon nanotubes-hydroxyapatite nanocomposites for an improved osteoblast cell response. J Nanomater 2016:10CrossRefGoogle Scholar
  26. 26.
    Kausar A, Rafique I, Muhammad B (2016) Review of applications of polymer/carbon nanotubes and epoxy/CNT composites. Polym Plast Technol Eng 55:1167–1191CrossRefGoogle Scholar
  27. 27.
    Taylor P et al (2014) Polymer-plastics technology and engineering melt processing and characterization of nanocomposites of PP/Na MMT blending with hyperbranched polyester melt processing and characterization of nanocomposites of PP/Na þ MMT blending with hyperbranched polyester. Polym Plast Technol Eng.  https://doi.org/10.1080/03602559.2014.886064 CrossRefGoogle Scholar
  28. 28.
    Le VT et al (2013) Surface modification and functionalization of carbon nanotube with some organic compounds. Adv Nat Sci Nanosci Nanotechnol 4:035017CrossRefGoogle Scholar
  29. 29.
    Ahmed DS, Haider AJ, Mohammad MR (2013) Comparesion of functionalization of multi-walled carbon nanotubes treated by oil olive and nitric acid and their characterization. Energy Procedia 36:1111–1118CrossRefGoogle Scholar
  30. 30.
    Worsley KA, Kalinina I, Bekyarova E, Haddon RC (2009) Functionalization and dissolution of nitric acid treated single-walled carbon nanotubes. J Am Chem Soc 131:18153–18158CrossRefGoogle Scholar
  31. 31.
    Smith B, Yang J, Bitter JL, Ball WP, Fairbrother DH (2012) Influence of surface oxygen on the interactions of carbon nanotubes with natural organic matter. Environ Sci Technol 46:12839–12847CrossRefGoogle Scholar
  32. 32.
    Rajarao R, Jayanna RP, Sahajwalla V, Bhat BR (2014) Green approach to decorate multi-walled carbon nanotubes by metal/metal oxide nanoparticles. Procedia Mater Sci 5:69–75CrossRefGoogle Scholar
  33. 33.
    Baby TT, Sundara R (2011) Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J Phys Chem C 115:8527–8533CrossRefGoogle Scholar
  34. 34.
    Su Y et al (2012) Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 6:8349–8356CrossRefGoogle Scholar
  35. 35.
    Peng C, Zhang S, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18:777–788CrossRefGoogle Scholar
  36. 36.
    Philip B, Xie J, Chandrasekhar A, Abraham J, Varadan VK (2004) A novel nanocomposite from multiwalled carbon nanotubes functionalized with a conducting polymer. Smart Mater Struct 13:295–298CrossRefGoogle Scholar
  37. 37.
    Chouit F et al (2014) Synthesis and characterization of HDPE/N-MWNT nanocomposite films. Nanoscale Res Lett 9:288CrossRefGoogle Scholar
  38. 38.
    Ruban YJV, Mon SG, Roy DV (2011) Processing and thermal/mechanical studies of unsaturated polyester toughened epoxy composites filled with amine functionalized carbon nanotubes. Int J Plast Technol 15:133–149CrossRefGoogle Scholar
  39. 39.
    Oyefusi A et al (2014) Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: promising bone implant materials. Spectrochim Acta Part A Mol Biomol Spectrosc 132:410–416CrossRefGoogle Scholar
  40. 40.
    Jirimali HD et al (2017) Waste eggshell-derived calcium oxide and nanohydroxyapatite biomaterials for the preparation of LLDPE polymer nanocomposite and their thermomechanical study. Polym Plast Technol Eng.  https://doi.org/10.1080/03602559.2017.1354221 CrossRefGoogle Scholar
  41. 41.
    Peng Y-P et al (2018) Optimization of biodiesel production from waste cooking oil using waste eggshell as a base catalyst under a microwave heating system. Catalysts 8:81CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bhushan C. Chaudhari
    • 1
    • 2
  • Jitendra Khanderay
    • 1
  • Chandrashekhar Patil
    • 1
  • Amardip M. Patil
    • 1
  • Sachin A. Joshi
    • 3
  • Vijay Singh
    • 4
  • Krushna Kaduba Palodkar
    • 5
  • Annadanam V. Sesha Sainath
    • 5
  • Vikas V. Gite
    • 1
    Email author
  • Harishchandra D. Jirimali
    • 1
    • 6
    Email author
  1. 1.School of Chemical SciencesKavayitri Bahinabai Chaudhari North Maharashtra UniversityJalgaonIndia
  2. 2.University Institute of Chemical TechnologyKavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon (MS)JalgaonIndia
  3. 3.Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT)AnandIndia
  4. 4.Department of Chemical EngineeringKonkuk UniversitySeoulRepublic of Korea
  5. 5.Polymers and Functional Materials, Fluoro and Agrochemicals Department, Academy of Scientific & Innovative Research (AcSIR)CSIR-Indian Institute of Chemical TechnologyHyderabadIndia
  6. 6.Department of ChemistryUka Tarsadia UniversitySuratIndia

Personalised recommendations