Advertisement

Biomass Derived Antimicrobial Hybrid Cellulose Hydrogel with Green ZnO Nanoparticles for Curcumin Delivery and its Kinetic Modelling

  • B. Anagha
  • Dhanya George
  • P. Uma Maheswari
  • K. M. Meera Sheriffa BegumEmail author
Original paper
  • 15 Downloads

Abstract

Regenerated cellulose obtained from sugarcane bagasse was used for hydrogel preparation using epichlorohydrin (crosslinker) and green zinc oxide nanoparticles (ZNPs) which were phytosynthesised from musk melon seed extract. The synthesised ZNPs were characterised using FESEM and EDAX. The swelling capacity of the hydrogel was determined by swelling measurements. For drug delivery studies from hydrogel, curcumin was selected as the model drug for its appealing anticancer and antimicrobial activity. The presence of ZNPs and curcumin in the hybrid hydrogel was analysed using FTIR, XRD, TGA and SEM analysis. The drug loading efficiency was optimised by Taguchi method. The drug release studies were performed under varying pH and initial drug loading concentration. The kinetic studies showed the best fit with case II type of transport with polymer swelling as the drug release mechanism. Antimicrobial activity for curcumin loaded hybrid hydrogel and pure cellulose hydrogel was performed using Staphylococcus aureus (bacteria) and Trichophyton rubrum (fungi). Thus, the developed curcumin loaded biomass derived hybrid hydrogel could find potential application towards skin infective applications.

Keywords

Cellulose ZnO nanoparticles Hybrid hydrogel Curcumin delivery Antimicrobial activity 

Notes

Acknowledgements

We express our sincere gratitude to National Institute of Technology—Tiruchirappalli for providing requisite infrastructure facilities to carry out this research work.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Calo E, Khutoryanskiy VV (2015) Eur Polym J 65:252CrossRefGoogle Scholar
  2. 2.
    Gonzalez JS, Luduena LN, Ponce A, Alvarez VA (2014) Mater Sci Eng C 34:54CrossRefGoogle Scholar
  3. 3.
    Zhou Y, Fu S, Zhang L, Zhan H (2013) Carbohydr Polym 97:429CrossRefGoogle Scholar
  4. 4.
    Chang C, Zhang L (2011) Carbohydr Polym 84:40CrossRefGoogle Scholar
  5. 5.
    Pan Y, Wang J, Cai P, Xiao H (2018) Int J Biol Macromol 118:132CrossRefGoogle Scholar
  6. 6.
    Maity J, Ray SK (2017) Int J Biol Macromol 97:238CrossRefGoogle Scholar
  7. 7.
    Dhananasekaran S, Palanivel R (2017) J Polym Environ 25:435CrossRefGoogle Scholar
  8. 8.
    Muthulakshmi L, Rajini N, Nellaiah H, Kathiresan T, Jawaid M, Rajulu AV (2017) J Polym Environ 25:1021–1032CrossRefGoogle Scholar
  9. 9.
    Ruchir P, Yuvraj SN (2017) J Polym Environ 25:1087–1098CrossRefGoogle Scholar
  10. 10.
    Ramesan MT, Siji C, Kalaprasad G, Bahuleyan BK, Al-Maghrabi MA (2018) J Polym Environ 6:2983CrossRefGoogle Scholar
  11. 11.
    Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B (2017) Drug Discov Today 22:12CrossRefGoogle Scholar
  12. 12.
    Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P (2015) RSC Adv 5:4993CrossRefGoogle Scholar
  13. 13.
    Azizi S, Mohamad R, Shahri MM (2017) Molecules 22:301CrossRefGoogle Scholar
  14. 14.
    Hashem M, Sharaf S, Abd El-Hady MM, Hebeish A (2013) Carbohydr Polym 95:421CrossRefGoogle Scholar
  15. 15.
    Akbari ZZ, Farhadnejad H, Nia BF, Abedin S, Yadollahi M, Ghayeni MK (2016) Int J Biol Macromol 93:1317CrossRefGoogle Scholar
  16. 16.
    Elumalai K, Velmurugan S (2015) Appl Surf Sci 345:329CrossRefGoogle Scholar
  17. 17.
    Johar N, Ahmad I, Dufresne A (2012) Ind Crops Prod 37:93CrossRefGoogle Scholar
  18. 18.
    Chang C, Zhang L, Zhou J, Zhang L, Kennedy JF (2010) Carbohydr Polym 82:122CrossRefGoogle Scholar
  19. 19.
    Ciolacu D, Oprea AM, Anghel N, Cazacu G, Cazacu M (2012) Mater Sci Eng C 32:452CrossRefGoogle Scholar
  20. 20.
    Jawad AK, Fahad P, Nazar MR, Muhammad N, Nayab K, Zeeshan J (2017) J Polym Environ 25:556CrossRefGoogle Scholar
  21. 21.
    Konwar A, Kalita S, Kotoky J, Chowdhury D (2016) ACS Appl Mater Interfaces 8:20625CrossRefGoogle Scholar
  22. 22.
    Bielska D, Karewicz A, Kaminski K, Kiełkowicz I, Lachowicz T, Szczubiałka K, Nowakowska M (2013) Eur Polym J 49:2485CrossRefGoogle Scholar
  23. 23.
    Shabestarian H, Tabrizi HM, Soltani M, Namvar F, Azizi S, Mohamad R, Shabestarian H (2017) Mater Res 20:264CrossRefGoogle Scholar
  24. 24.
    Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2014) Int J Biol Macromol 74:136CrossRefGoogle Scholar
  25. 25.
    Yadollahi M, Farhoudian S, Barkhordari S, Gholamali I, Farhadnejad H, Bezar HM (2016) Int J Biol Macromol 82:273CrossRefGoogle Scholar
  26. 26.
    Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Int J Biol Macromol 74:136CrossRefGoogle Scholar
  27. 27.
    Wang N, Tong T, Xie M, Gaillard JF (2016) Nanotechnology 27:324001CrossRefGoogle Scholar
  28. 28.
    Rakhshaei R, Namazi H (2017) Mater Sci Eng C 73:456CrossRefGoogle Scholar
  29. 29.
    Saeed AM (2013) Int J Adv Biol Biomed Res 1:1614Google Scholar
  30. 30.
    Senthilkumar N, Nandhakumar E, Priya P, Soni D, Vimalan M, Potheher IV (2017) New J Chem 41:10347CrossRefGoogle Scholar
  31. 31.
    Gunathilake TMSU, Ching YC, Chuah CH (2017) Polymers 9:64CrossRefGoogle Scholar
  32. 32.
    Shankar S, Oun AA, Jong-Whan R (2018) Int J Biol Macromol 107:17CrossRefGoogle Scholar
  33. 33.
    Ashfaq M, Khan S, Verma N (2014) Biochem Eng J 90:79CrossRefGoogle Scholar
  34. 34.
    Wang W, Zhu R, Xie Q, Li A, Xiao Y, Li K, Liu H, Cui D, Chen Y, Wang S (2012) Int J Nanomed 7:3667CrossRefGoogle Scholar
  35. 35.
    Jebela FS, Almasi H (2016) Carbohydr Polym 149:8CrossRefGoogle Scholar
  36. 36.
    Sriram K, Maheswari PU, Begum KMMS, Arthanareeswaran G, Antoniraj GM, Kandasamy R (2018) Eur J Pharm Sci 116:48CrossRefGoogle Scholar
  37. 37.
    Krishnakumar IM, Ravi A, Kumar D, Kuttan R, Maliakel B (2012) J Funct Foods 4:348CrossRefGoogle Scholar
  38. 38.
    Kharat M, Du Z, Zhang G, McClements DJ (2017) J Agric Food Chem 65:1525CrossRefGoogle Scholar
  39. 39.
    Song IS, Cha JS, Choi MK (2016) Molecules 21:1386CrossRefGoogle Scholar
  40. 40.
    Varaprasad K, Vimala K, Sakey R, Reddy NN, Reddy GSM, Raju KM (2012) J Polym Environ 20:573CrossRefGoogle Scholar
  41. 41.
    Sriram K, Maheswari PU, Ezhilarasu A, Begum KMMS, Arthanareeswaran G (2017) Asia-Pac J Chem Eng 12:858CrossRefGoogle Scholar
  42. 42.
    Espitia PJP, Soares NFF, Coimbra JSR, Andrade NJ, Cruz RS, Medeiros EAA (2012) Food Bioprocess Technol 5:1447CrossRefGoogle Scholar
  43. 43.
    Liu Y, Cai Y, Jiang X, Wu J, Le X (2016) Food Hydrocoll 52:564CrossRefGoogle Scholar
  44. 44.
    Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K (2014) Biomed Res Int 2014:1CrossRefGoogle Scholar
  45. 45.
    Sawant VJ, Bamane SR (2018) J Drug Deliv Sci Technol 43:397CrossRefGoogle Scholar
  46. 46.
    Wang H, Gong X, Guo X, Liu C, Fan Y, Zhang J, Niu B, Li W (2019) Int J Biol Macromol 121:1118CrossRefGoogle Scholar
  47. 47.
    Upadhyaya L, Singh J, Agarwal V, Pandey AC, Verma SP, Das P, Tewari RP (2014) J Polym Res 21:550CrossRefGoogle Scholar
  48. 48.
    Sun X, Liu C, Omer AM, Lu W, Zhang S, Jiang X, Wu H, Yu D, Ouyang XK (2019) Int J Biol Macromol 128:468CrossRefGoogle Scholar
  49. 49.
    Mahmoud GA, Ali A, Raafat AI, Badawy NA, Elshahawy MF (2018) Radiat Phys Chem 147:18CrossRefGoogle Scholar
  50. 50.
    Kodoth AK, Ghate VM, Lewis SA, Badalamoole V (2018) Int J Biol Macromol 115:418CrossRefGoogle Scholar
  51. 51.
    Wu W, Liu T, He H, Wu X, Cao X, Jin J, Sun Q, Roy VAL, Li RKY (2018) Colloids Surf B Biointerfaces 167:538CrossRefGoogle Scholar
  52. 52.
    Janpetch N, Saito N, Rujiravanit R (2016) Carbohydr Polym 148:335CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations