Advertisement

Use of Different Proteins to Produce Biodegradable Films and Blends

  • Daiane Nogueira
  • Vilásia Guimarães MartinsEmail author
Original paper

Abstract

The objective of this study was to develop, characterize and evaluate biodegradable films produced from different proteins and their blends. The proteins of hake (Cynoscion guatacupa), obtained by the process of pH variation, as well as gluten and zein proteins were used in this study. The hake protein films (HF) showed the highest tensile strength (TS) and solubility in water, while the gluten films (GF) presented the higher elongation at break comparing to the others. The blend (BL) produced with hake and gluten (BL H/G) showed higher TS, water vapor permeability and elongation (WVP), and lower water solubility than HF. BL H/G still showing good thermal properties and its biodegradability occurred in less than 10 days. The zein film presented more crystalline zones and less mechanical properties when compared to the others. The zein blends with gluten (BL Z/G) presented higher elongation and WVP, and lower solubility when compared to ZF. These changes indicate that the BL Z/G may be an alternative to improve the properties of individual zein films. The BL Z/G showed complete biodegradability in less than 40 days, while the zein films showed about 75% degraded in 60 days. The BL H/G presented good mechanical and thermal resistance, with ΔH superior to the other films, also showed complete biodegradability in less than 10 days, proving to be the most promising blend for the development of sustainable materials for food packaging.

Keywords

Hake proteins Gluten Zein Blend Renewable materials Food packaging 

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The authors also acknowledge the Programa de Apoio à Publicação da Produção Acadêmica/PROPESP/FURG/2018.

References

  1. 1.
    Sukhija S, Singh S, Riar CS (2019) J Sci Food Agric.  https://doi.org/10.1002/jsfa.9557 Google Scholar
  2. 2.
    Sukhija S, Singh S, Riar CS (2018) Polym Compos 39:407–415CrossRefGoogle Scholar
  3. 3.
    ASTM., 1999. Standards pertaining to the biodegradability and compostability of plastics D20-96, PhiladelphiaGoogle Scholar
  4. 4.
    Gennadios A, Brandenburg AH, Weller CL, Testin RF (1993) J Agric Food Chem 41:1835–1839CrossRefGoogle Scholar
  5. 5.
    Romani VP, Prentice-Hernández C, Martins VG (2017) Ind Crops Prod 97:268–274CrossRefGoogle Scholar
  6. 6.
    Hager A, Vallons KJR, Arendt EK (2012) J Agric Food Chem 60:6157–6163CrossRefGoogle Scholar
  7. 7.
    Ozcalik O, Tihminlioglu F (2013) J Food Eng 114:505–513CrossRefGoogle Scholar
  8. 8.
    Tavares LL, de Almeida CB, Cornélio ÍP, Caruso ML, Lopes Filho JF (2012) Ciênc Tecn Alim 32:314–322CrossRefGoogle Scholar
  9. 9.
    Papalia IS, Londero PMG (2015) Ciênc Rur 45:552–559CrossRefGoogle Scholar
  10. 10.
    Dong S, Gao A, Zhao Y, Li YT, Chen Y (2017) Food Biop Proc 106:65–74CrossRefGoogle Scholar
  11. 11.
    Tadpitchayangkoon P, Park JW, Mayer SG, Yongsawatdigul J (2010) J Agric Food Chem 58:4241–4249CrossRefGoogle Scholar
  12. 12.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–276Google Scholar
  13. 13.
    Freitas IR, Gautério GV, Rios DG, Prentice C (2011) J Food Sci Eng 1:374–378Google Scholar
  14. 14.
    AOAC (2000) Official methods of analysis, 17th edn. Association of Official Analytical Chemistry, Washingthon, D.C.Google Scholar
  15. 15.
    Zavareze ER, El Halal SLM, Silva RM, Dias ARG, Prentice-Hernández C (2013) J Food Proc Preser 37:1–9CrossRefGoogle Scholar
  16. 16.
    Gontard N, Guilbert S, Cuq JL (1992) J Food Sci 58:206–211CrossRefGoogle Scholar
  17. 17.
    Pena-Serna C, Lopes-Filho JF (2013) Mater Chem Phys 142:580–585CrossRefGoogle Scholar
  18. 18.
    Ma W, Tang CH, Yin SW, Yang XQ, Wang Q, Liu F, Wei ZH (2012) Food Res Int 49:572–579.  https://doi.org/10.1016/j.foodres.2012.07.037 CrossRefGoogle Scholar
  19. 19.
    Gontard N, Duchez C, Cuq JL, Guilbert S (1994) Int J Food Sci Tech 29:39–50CrossRefGoogle Scholar
  20. 20.
    ASTM (2000) Standard test methods for water vapor transmission of material, E96-00. In: Annual Book of ASTM Standards. American Society for Testing and Materials, PhiladelphiaGoogle Scholar
  21. 21.
    ASTM (2002) Standard test methods for tensile properties of thin plastic sheeting, D882-02. In: Annual Book of ASTM Standards. American Society for Testing and Materials, PhiladelphiaGoogle Scholar
  22. 22.
    Piyada K, Waranyou S, Thawien W (2013) Int Food Resear J 20:439–449Google Scholar
  23. 23.
    Maran JP, Sivakumar V, Thirugnanasambandham K, Sridhar R (2014) Carb Polym 101:20–28CrossRefGoogle Scholar
  24. 24.
    Silva N, Junqueira VCA, Silveira NFA (1997) Manual de métodos de análise microbiológica de alimentos. São Paulo, SPGoogle Scholar
  25. 25.
    Hernandez-Izquierdo VM, Krochta JM (2008) J Food Sci 73:30–39CrossRefGoogle Scholar
  26. 26.
    Brandelero RPH, Grossmann MV, Yamashita F (2003) Polím 23:270–275Google Scholar
  27. 27.
    Ferreira SP, Ruiz W, Gaspar-Cunha A (2014) Revi Ciên Agrár 37:10–19Google Scholar
  28. 28.
    Yeannes MI, Almandos ME (2003) J Food Compos Anal 16:81–92CrossRefGoogle Scholar
  29. 29.
    Sobral PJA (2000) Pesq Agrop Brasil 35:1251–1259CrossRefGoogle Scholar
  30. 30.
    Kashiri M, Cerisuelo JP, Domínguez I, López-Carballo G, Muriel-Gallet V, Gavara R, Hernández-Muñoz P (2017) Food Hydrocolloids 70:260–268CrossRefGoogle Scholar
  31. 31.
    Shukla R, Cheryan M (2001) Ind Crops Prod 13:171–192CrossRefGoogle Scholar
  32. 32.
    Su J, Yuan X, Huang Z, Wang X, Lu X, Zhang L, Wang S (2012) Mater Sci Eng C 32:40–46.  https://doi.org/10.1016/j.msec.2011.09.009 CrossRefGoogle Scholar
  33. 33.
    Wihodo M, Moraru CI (2013) J Food Eng 114:292–302CrossRefGoogle Scholar
  34. 34.
    Ortolan F, Corrêa GP, da Cunha RL, Steel CJ (2017) Food Sci Tech 79:647–654Google Scholar
  35. 35.
    Wu Y, Weller CL, Hamouz F, Cuppett SL, Schnepf M (2002) Adv Food Nutr Res 44:347–394CrossRefGoogle Scholar
  36. 36.
    Dangaran K, Tomasula PM, Qi P (2009) Edible films and coatings for food applications. Nova Science Publishers, New YorkGoogle Scholar
  37. 37.
    Cuq B, Gontard N, Cuq JL, Guilbert S (1997) J Agric Food Chem 45:622–626CrossRefGoogle Scholar
  38. 38.
    Park HJ, Chinnan MS (1995) J Food Eng 25:497–507CrossRefGoogle Scholar
  39. 39.
    Bourtoom T, Chinnan MS (2008) Food Sci Technol 41:1633–1641Google Scholar
  40. 40.
    Kokoszka S, Debeaufort F, Lenart A, Voilley A (2010) Int Dairy J 20:53–60CrossRefGoogle Scholar
  41. 41.
    Hanani ZAN, O’Mahony JA, Roos YH, Oliveira PM, Kerry JP (2014) Food Pack Shelf Life 2:91–101CrossRefGoogle Scholar
  42. 42.
    Romani VP, Martins VG, Vera A, Olsen BD (2018) Food Hydrocolloids 74:307–314CrossRefGoogle Scholar
  43. 43.
    Huo W, Wei D, Zhu W, Li Z, Jiang Y (2018) J Cereal Sci 79:354–361CrossRefGoogle Scholar
  44. 44.
    Woggum T, Sirivongpaisal P, Wittaya T (2015) Food Hydrocolloids 50:54–64CrossRefGoogle Scholar
  45. 45.
    Jouki M, Yazdi FT, Mortazavi SA, Koocheki A (2014) Food Hydrocolloids 36:9–19CrossRefGoogle Scholar
  46. 46.
    Mothé CG (2009) Análise térmica de materiais. São PauloGoogle Scholar
  47. 47.
    Coutinho FMB, Delpech MC, Alves TL, Ferreira AA (2003) Polym Degrad Stab 81:19–27CrossRefGoogle Scholar
  48. 48.
    Liu M, Zhou Y, Zhang Y, Yu C, Cao S (2014) Int J Bio Macromol 70:340–346CrossRefGoogle Scholar
  49. 49.
    Swain SN, Rao KK, Nayak PL (2004) J Appl Polym Sci 93:2590–2596CrossRefGoogle Scholar
  50. 50.
    Pastor C, Sánchez-González L, Cháfer M, Chiralt M, González-Martínez S (2010) Carbohydr Polym 82:1174–1183CrossRefGoogle Scholar
  51. 51.
    Gu L, Wang M (2013) Carbohydr Polym 119:288–298Google Scholar
  52. 52.
    Ghanbarzadeh B, Oromiehi AR (2008) Int J Biol Macromol 43:209–215CrossRefGoogle Scholar
  53. 53.
    Masamba K, Li Y, Zhong F (2016) Food Pack Shelf Life 10:97–105CrossRefGoogle Scholar
  54. 54.
    Sobral PJA, Menegalli FC, Hubinguer MD, Roques MA (2001) Food Hydrocolloids 15:423–432CrossRefGoogle Scholar
  55. 55.
    Benavides S, Villalobos-Carvajal R, Reyes JE (2011) J Food Eng 110:232–239CrossRefGoogle Scholar
  56. 56.
    Villalobos R, Chanona J, Hernández P, Gutiérrez G, Chiralt A (2005) Food Hydrocoll 19:53–61.  https://doi.org/10.1016/j.foodhyd.2004.04.014 CrossRefGoogle Scholar
  57. 57.
    Fakhouri FM, Costa D, Yamashita F, Martelli SM, Jesus RC, Alganer K, Collares-Queiroz FP, Innocentini-Mei LH (2013) Carbohydr Polym 95:681–689CrossRefGoogle Scholar
  58. 58.
    Arancibia MY, Lopez-Caballero E, Gómez-Guillen MC, Montero P (2014) Food Control 44:7–15CrossRefGoogle Scholar
  59. 59.
    Medina-Jaramillo C, Gutiérrez TJ, Goyanes S, Bernal C, Famá L (2016) Carbohydr Polym 151:150–159CrossRefGoogle Scholar
  60. 60.
    Medina-Jaramillo C, Ochoa-Yepes O, Bernal C, Famá L (2017) Carbohydr Polym 176:187–194CrossRefGoogle Scholar
  61. 61.
    Bashir A, Jabeen S, Gull N, Islam A, Sultan M, Ghaffar A, Khan SM, Iqbal SS, Jamil T (2018) Int J Biol Macromol 106:351–359CrossRefGoogle Scholar
  62. 62.
    Nguyen DM, Do TVV, Grillet AC, Ha-Thuc H, Ha-Thuc CN (2016) Int Biodeterior Biodegrad 115:257–265CrossRefGoogle Scholar
  63. 63.
    Albertsson AC (1980) Eur Polym J 16:623–630CrossRefGoogle Scholar
  64. 64.
    Otake Y, Kobayashi T, Ashabe H, Murakami N, Ono K (1995) J Appl Polym Sci 56:1789–1796CrossRefGoogle Scholar
  65. 65.
    Colussi R, Pinto VZ, El Halal SLM, Biduski B, Prietto L, Castilhos DD, Zavareze ER, Dias ARG (2017) Food Chem 221:1614–1620CrossRefGoogle Scholar
  66. 66.
    González A, Strumia MC, Igarzabal CIA (2011) J Food Eng 06:331–338CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and FoodFederal University of Rio GrandeRio GrandeBrazil

Personalised recommendations