Mechanical and Thermal Properties of Green Thermoplastic Elastomer Vulcanizate Nanocomposites Based on Poly (vinyl chloride) and Nitrile Butadiene Rubber Containing Organoclay and Rice Straw Natural Fibers

  • S. M. R. ParanEmail author
  • G. Naderi
  • S. Shokoohi
  • J. Ebadati
  • C. Dubois
Original paper


Green thermoplastic elastomer vulcanizates (GTPV) nanocomposites using poly (vinyl chloride) (PVC) and nitrile butadiene rubber (NBR) containing 5 wt% Cloisite 30B as an organoclay and various concentrations of rice straw natural fibers were made by melt mixing process and compression molding. The effect of used organoclay and various loadings of rice straw was monitored through using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), tensile tests and rheological measurements. The morphological investigations revealed that the GTPV nanocomposites reinforced by rice straw natural fiber show a more rough fracture surfaces indicated the existence of some interactions between the natural fiber and polymer matrix. Thermal decomposition measurements revealed a higher thermal stability for GTPV nanocomposites containing higher rice straw natural fibers. The tensile test analysis suggested that there is an optimum value for the weight fraction of rice straw to enhance the Young’s modulus and tensile strength of the prepared GTPV nanocomposites up to 9 MPa and 35 MPa, respectively. The effect of rice straw loading on the Young’s modulus of the PVC/NBR/organoclay GTPV nanocomposites was predicted through using the parallel and series equations of modified Ji’s model. The results show that the theoretical model can precisely predict the variation of Young’s modulus with respect to the rice straw loading.


Green nanocomposites Organoclay Rice straw Polyvinyl chloride Nitrile butadiene rubber Mechanical and thermal properties 



  1. 1.
    Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300:10–24CrossRefGoogle Scholar
  2. 2.
    Ashori A (2013) Effects of nanoparticles on the mechanical properties of rice straw/polypropylene composites. J Compos Mater 47:149–154CrossRefGoogle Scholar
  3. 3.
    Chen Y, Wang W, Yuan D, Xu C, Cao L, Liang X (2018) Bio-Based PLA/NR-PMMA/NR ternary thermoplastic vulcanizates with balanced stiffness and toughness:“soft–hard” core–shell continuous rubber phase, in situ compatibilization, and properties. ACS Sustain Chem Eng 6:6488–6496CrossRefGoogle Scholar
  4. 4.
    Esmizadeh E, Naderi G, Ghoreishy MHR, Bakhshandeh GR (2011) Optimal parameter design by Taguchi method for mechanical properties of NBR/PVC nanocomposites. Iran Polym J 20(7):587Google Scholar
  5. 5.
    Grozdanov A, Buzarovska A, Bogoeva-Gaceva G, Avella M, Errico ME, Gentille G (2006) Rice straw as an alternative reinforcement in polypropylene composites. Agron Sustain Dev 26(4):251–255CrossRefGoogle Scholar
  6. 6.
    Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58:80–86CrossRefGoogle Scholar
  7. 7.
    Huang J, Cao L, Yuan D, Chen Y (2018) Design of multi-stimuli-responsive shape memory biobased PLA/ENR/Fe3O4 TPVs with balanced stiffness-toughness based on selective distribution of Fe3O4. ACS Sustain Chem Eng 7:2304–2315CrossRefGoogle Scholar
  8. 8.
    Huang J, Cao L, Yuan D, Chen Y (2018) Design of novel self-healing thermoplastic vulcanizates utilizing thermal/magnetic/light-triggered shape memory effects. ACS Appl Mater Interfaces 10:40996–41002CrossRefGoogle Scholar
  9. 9.
    Ji B, Gao H (2004) Mechanical properties of nanostructure of biological materials. J Mech Phys Solids 52:1963–1990CrossRefGoogle Scholar
  10. 10.
    Joshi SV, Drzal L, Mohanty A, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A 35:371–376CrossRefGoogle Scholar
  11. 11.
    Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B 42:856–873CrossRefGoogle Scholar
  12. 12.
    Liu Y, Cao L, Yuan D, Chen Y (2018) Design of super-tough co-continuous PLA/NR/SiO2 TPVs with balanced stiffness-toughness based on reinforced rubber and interfacial compatibilization. Compos Sci Technol 165:231–239CrossRefGoogle Scholar
  13. 13.
    Malkapuram R, Kumar V, Negi YS (2009) Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 28:1169–1189CrossRefGoogle Scholar
  14. 14.
    Mutlu I (2009) Investigation of tribological properties of brake pads by using rice straw and rice husk dust. J Appl Sci 9:377–381CrossRefGoogle Scholar
  15. 15.
    Naderi G, Lafleur PG, Dubois C (2007) Microstructure-properties correlations in dynamically vulcanized nanocomposite thermoplastic elastomers based on PP/EPDM. Polym Eng Sci 47:207–217CrossRefGoogle Scholar
  16. 16.
    Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol J-F (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301–306CrossRefGoogle Scholar
  17. 17.
    Paran S, Naderi G, Ghoreishy M (2016) Mechanical properties development of high-ACN nitrile-butadiene rubber/organoclay nanocomposites. Plast, Rubber Compos 45:389–397CrossRefGoogle Scholar
  18. 18.
    Paran S, Naderi G, Ghoreishy M (2016) XNBR-grafted halloysite nanotube core-shell as a potential compatibilizer for immiscible polymer systems. Appl Surf Sci 382:63–72CrossRefGoogle Scholar
  19. 19.
    Paran S, Naderi G, Ghoreishy M (2017) Microstructure and mechanical properties of thermoplastic elastomer nanocomposites based on PA6/NBR/HNT. Polym Compos 38:E451CrossRefGoogle Scholar
  20. 20.
    Paran S, Naderi G, Ghoreishy M, Heydari A (2018) Enhancement of mechanical, thermal and morphological properties of compatibilized graphene reinforced dynamically vulcanized thermoplastic elastomer vulcanizates based on polyethylene and reclaimed rubber. Compos Sci Technol 161:57–65CrossRefGoogle Scholar
  21. 21.
    Paran SMR, Abdorahimi M, Shekarabi A, Khonakdar HA, Jafari SH, Saeb MR (2018) Modeling and analysis of nonlinear elastoplastic behavior of compatibilized polyolefin/polyester/clay nanocomposites with emphasis on interfacial interaction exploration. Compos Sci Technol 154:92–103CrossRefGoogle Scholar
  22. 22.
    Paran SMR, Naderi G, Babakhani A (2017) An experimental study of the effect of CNTs on the mechanical properties of CNTs/NR/EPDM nanocomposite. Polym Compos 39(11):4071–4079CrossRefGoogle Scholar
  23. 23.
    Paran SMR, Vahabi H, Ducos F, Formela K, Zarrintaj P, Laachachi A, Lopez cuesta JM, Saeb MR (2018) Crystallization kinetics study of dynamically vulcanized PA6/NBR/HNTs nanocomposites by nonisothermal differential scanning calorimetry. J Appl Polym Sci 135(28):46488CrossRefGoogle Scholar
  24. 24.
    Paran SR, Naderi G, Ghoreishy MR (2016) Effect of halloysite nanotube on microstructure, rheological and mechanical properties of dynamically vulcanized PA6/NBR thermoplastic vulcanizates. Soft Mater 14:127–139CrossRefGoogle Scholar
  25. 25.
    Pukánszky B, Mudra I, Staniek P (1997) Relation of crystalline structure and mechanical properties of nucleated polypropylene. J Vinyl Addit Technol 3:53–57CrossRefGoogle Scholar
  26. 26.
    Qin L, Qiu J, Liu M, Ding S, Shao L, Lü S, Zhang G, Zhao Y, Fu X (2011) Mechanical and thermal properties of poly (lactic acid) composites with rice straw fiber modified by poly (butyl acrylate). Chem Eng J 166:772–778CrossRefGoogle Scholar
  27. 27.
    Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18:351–363CrossRefGoogle Scholar
  28. 28.
    Westman MP, Fifield LS, Simmons KL, Laddha S, Kafentzis TA (2010) Natural fiber composites: a review. Pacific Northwest National Laboratory (PNNL), RichlandCrossRefGoogle Scholar
  29. 29.
    Xu C, Wu W, Zheng Z, Wang Z, Nie J (2018) Design of shape-memory materials based on sea-island structured EPDM/PP TPVs via in situ compatibilization of methacrylic acid and excess zinc oxide nanoparticles. Compos Sci Technol 167:431–439CrossRefGoogle Scholar
  30. 30.
    Xu C, Zheng Z, Wu W, Wang Z, Fu L (2019) Dynamically vulcanized PP/EPDM blends with balanced stiffness and toughness via in situ compatibilization of MAA and excess ZnO nanoparticles: preparation, structure and properties. Compos B 160:147–157CrossRefGoogle Scholar
  31. 31.
    Yang H-S, Kim D-J, Kim H-J (2003) Rice straw–wood particle composite for sound absorbing wooden construction materials. Bioresour Technol 86:117–121CrossRefGoogle Scholar
  32. 32.
    Yao F, Wu Q, Lei Y, Xu Y (2008) Rice straw fiber-reinforced high-density polyethylene composite: effect of fiber type and loading. Ind Crops Prod 28:63–72CrossRefGoogle Scholar
  33. 33.
    Zare Y, Garmabi H (2015) A developed model to assume the interphase properties in a ternary polymer nanocomposite reinforced with two nanofillers. Compos B 75:29–35CrossRefGoogle Scholar
  34. 34.
    Zhao Y, Qiu J, Feng H, Zhang M, Lei L, Wu X (2011) Improvement of tensile and thermal properties of poly (lactic acid) composites with admicellar-treated rice straw fiber. Chem Eng J 173:659–666CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. M. R. Paran
    • 1
    Email author
  • G. Naderi
    • 2
  • S. Shokoohi
    • 3
  • J. Ebadati
    • 1
  • C. Dubois
    • 2
  1. 1.Department of Polymer ProcessingIran Polymer and Petrochemical InstituteTehranIran
  2. 2.Department of Chemical Engineering, CREPECÉcole PolytechniqueMontrealCanada
  3. 3.Chemical, Polymeric and Petrochemical Technology Development Research DivisionResearch Institute of Petroleum IndustryTehranIran

Personalised recommendations