Advertisement

Pectin Based Graft Copolymer–ZnO Hybrid Nanocomposite for the Adsorptive Removal of Crystal Violet

  • Arun K. Kodoth
  • Vishalakshi BadalamooleEmail author
Original paper

Abstract

In this work we report the comparative study of the dye adsorption behavior of a Pectin-based terpolymer gel, pectin-graft-(poly(2-acrylamido-2-methyl-1-propane sulfonic acid)-co-acrylamide) (Pec-g-poy(AMPS-co-AAm)) and its nanocomposite with ZnO, (Pec-g-poy(AMPS-co-AAm)/ZnO) from aqueous solutions. Both the hydrogel systems have been synthesized using microwave irradiation technique through free radical polymerization. Swelling behavior of the systems was studied in buffer solutions of pH ranging from 1.2 to 13 and maximum swelling was observed in neutral medium. The equilibrium swelling of parent gel was found to be 28.12 g/g whereas it was 16.54 in the case of nanocomposite. Cationic dye, crystal violet, is employed to assess the adsorption efficiency of the gel samples from aqueous solutions. The influence of initial dye concentration was investigated. A maximum adsorption of 329 and 568 mg/g has been observed for the parent gel and the nanocomposite respectively. The presence of ZnO is observed to enhance the adsorption capacity of Pec-g-poy(AMPS-co-AAm) gel considerably. The kinetic studies revealed a second order adsorption process with high rate of initial adsorption in the case of the nanocomposite when compared to the parent gel and the isotherm studies reveals that the adsorption process fits well into Langmuir model. The evaluation of thermodynamic parameters indicated the adsorption process to be exothermic and spontaneous. Desorption studies under acidic condition showed that almost 96% of the adsorbed dye molecules could be desorbed to the stripping solution of pH 1.2 which support the use of these hydrogel systems for the repeated use as adsorbents for cationic dyes.

Keywords

Pectin ZnO nanoparticles Microwave Nanocomposite Dye adsorption 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10924_2019_1488_MOESM1_ESM.docx (553 kb)
Supplementary material 1 (DOCX 554 kb)

References

  1. 1.
    Mohan D, Singh KP, Singh G, Kumar K (2002) Ind Eng Chem Res 41:3688–3695CrossRefGoogle Scholar
  2. 2.
    Lavanya C, Dhankar R, Chhikara S, Sheoran S (2014) Int J Curr Microbiol Appl Sci 3:189–199Google Scholar
  3. 3.
    Mathur N, Bhatnagar P, Sharma P (2012) Univ J Environ 2:1–18Google Scholar
  4. 4.
    Ding Y, Sun C, Xu X (2009) Eur J Mass Spectrom 15:705–713CrossRefGoogle Scholar
  5. 5.
    Pathania D, Sharma G, Kumar A, Naushad M, Kalia S, Sharma A, Alothman ZA (2015) Toxicol Environ Chem 97:526–537CrossRefGoogle Scholar
  6. 6.
    Naushad M, Alothman ZA, Awual MR, Alfadul SM, Ahamad T (2016) Desalin Water Treat 57:13527–13533CrossRefGoogle Scholar
  7. 7.
    Ratna, Padhi BS (2012) Int J Environ Sci 3:940–955Google Scholar
  8. 8.
    de Lima ROA, Bazo AP, Salvadori DMF, Rech CM, Oliveira DP, Umbuzeiro GA (2007) Mutat Res 626:53–60CrossRefGoogle Scholar
  9. 9.
    Albadarin AB, Collins MN, Naushad M, Shirazian S, Walker G, Mangwandi C (2017) Chem Eng J 307:264–272CrossRefGoogle Scholar
  10. 10.
    Salgueiro AM, Daniel-da-Silva AL, Girao AV, Pinheiro PC, Trindade T (2013) Chem Eng J229:276–284CrossRefGoogle Scholar
  11. 11.
    Xie X, Li X, Luo H, Lu H, Chen F, Li W (2016) J Phys Chem B 120:4131–4142CrossRefGoogle Scholar
  12. 12.
    Mahanta D, Madras G, Radhakrishnan S, Patil S (2009) J Phys Chem B 113:2293–2299CrossRefGoogle Scholar
  13. 13.
    Sharma G, Thakur B, Naushad M, Kumar A, Stadler FJ, Alfadul SM, Mola GT (2018) Environ Chem Lett 16:113–146CrossRefGoogle Scholar
  14. 14.
    Zhou C, Wua Q, Lei T, Negulescu II (2014) Chem Eng J 251:17–24CrossRefGoogle Scholar
  15. 15.
    Kasgoz H, Durmus A (2008) Polym Adv Technol 19:838–845CrossRefGoogle Scholar
  16. 16.
    Bhattacharyya R, Ray SK (2015) Chem Eng J 260:269–283CrossRefGoogle Scholar
  17. 17.
    Shirsath SR, Patil AP, Bhanvase BA, Sonawane SH (2015) J Environ Chem Eng 3:1152–1162CrossRefGoogle Scholar
  18. 18.
    Bharathi KS, Ramesh ST (2013) Appl Water Sci 3:773–790CrossRefGoogle Scholar
  19. 19.
    Li X, Zheng L, Huang L, Zheng O, Lin Z, Guo L, Qiu B, Chen G (2013) J Appl Polym Sci 129:2857–2864CrossRefGoogle Scholar
  20. 20.
    Leung WH, Lo WH, Chan PH (2015) RSC Adv 5:90022–90030CrossRefGoogle Scholar
  21. 21.
    Zhang W, Yang H, Dong L, Yan H, Li H, Jiang Z, Kan X, Li A, Cheng R (2012) Carbohydr Polym 90:887–893CrossRefGoogle Scholar
  22. 22.
    Kumar N, Mittal H, Parashar V, Ray SS, Ngila JC (2016) RSC Adv 6:21929–21939CrossRefGoogle Scholar
  23. 23.
    Ghaedi M, Ansari MA, Habibi MH, Asghari AR (2014) J Ind Eng Chem 20:17–28CrossRefGoogle Scholar
  24. 24.
    Zhang L, Li L, Sun X, Liu P, Yang D, Zhao X (2016) Materials 9:927–942CrossRefGoogle Scholar
  25. 25.
    Zhang W, Zhou Z (2017) Nanomaterials 7:1–6Google Scholar
  26. 26.
    Gupta VK, Pathania D, Singh P (2014) Int J Environ Sci Technol 11:2015–2024CrossRefGoogle Scholar
  27. 27.
    Sharma G, Naushad M, Pathania D, Kumar A (2016) Desalin Water Treat 57:19443–19455CrossRefGoogle Scholar
  28. 28.
    Singha NR, Karmakar M, Mahapatra M, Mondal H, Dutta A, Roy C, Chattopadhyay PK (2017) Polym Chem 8:3211–3237CrossRefGoogle Scholar
  29. 29.
    Sharma G, Naushad M, Pathania D, Mittal A, El-desoky GE (2015) Desalin Water Treat 54:3114–3121CrossRefGoogle Scholar
  30. 30.
    Attallah OA, Al-Ghobashy MA, Nebsen M, Salem MY (2016) RSC Adv 6:11461–11480CrossRefGoogle Scholar
  31. 31.
    Naushad M, Sharma G, Kumar A, Sharma S, Ghfar AA, Bhatnagar A, Stadler FJ, Khan MR (2018) Int J Biol Macromol 106:1–10CrossRefGoogle Scholar
  32. 32.
    Rakhshaee R, Panahandeh M (2011) J Hazard Mater 189:158–166CrossRefGoogle Scholar
  33. 33.
    Mishra RK, Datt M, Banthia AK (2008) AAPS PharmSciTech 9:395–403CrossRefGoogle Scholar
  34. 34.
    Durmaz S, Okay O (2000) Polymer 41:3693–3704CrossRefGoogle Scholar
  35. 35.
    Khosla E, Kaur S, Dave PN (2015) Chem Ecol 31:173–185CrossRefGoogle Scholar
  36. 36.
    Kulkarni AV, Chavhan A, Bappakhane A, Chimmankar J (2016) Res J Chem Environ Sci 4:158–163Google Scholar
  37. 37.
    Khoshhesab ZM, Gonbadi K, Behbehani GR (2015) Desalin Water Treat 56:1558–1565CrossRefGoogle Scholar
  38. 38.
    Morsi RE, Elsalamony RA (2016) New J Chem 40:2927–2934CrossRefGoogle Scholar
  39. 39.
    Salehi R, Arami M, Mahmoodi NM, Bahrami H, Khorramfar S (2010) Colloids Surf B 80:86–93CrossRefGoogle Scholar
  40. 40.
    Sani HA, Aliyu HS, Tukur SA (2015) IOSR JAC 8:34–38Google Scholar
  41. 41.
    Arafat A, Samad SA, Huq D, Moniruzzaman M, Masum SM (2015) J Tex Sci Eng 5:1–4Google Scholar
  42. 42.
    Tian Q, Wu W, Yang S, Liu J, Yao W, Ren F, Jiang C (2017) Nanoscale Res Lett 12:1–10CrossRefGoogle Scholar
  43. 43.
    Kumar SS, Venkateswarlu P, Rao VR, Rao GN (2013) Int Nano Lett 3:1–6CrossRefGoogle Scholar
  44. 44.
    Krishna KA, Vishalakshi B (2017) Elixir Nanotechnology 107:47326–47331Google Scholar
  45. 45.
    Kodoth AK, Ghate VM, Lewis SA, Badalamoole V (2018) Int J Biol Macromol 115:418–430CrossRefGoogle Scholar
  46. 46.
    Kodoth AK, Badalamoole V (2019) Polym Bull.  https://doi.org/10.1007/s00289-019-02757-4 Google Scholar
  47. 47.
    Naushad M, Ahamad T, Sharma G, Al-Muhtaseb AH, Albadarin AB, Alam MM, Alothman ZA, Alshehri SM, Ghfar AA (2016) Chem Eng J 300:306–316CrossRefGoogle Scholar
  48. 48.
    Voicu G, Oprea O, Vasile BS, Andronescu E (2013) Dig J Nanomater Biostruct 8:667–675Google Scholar
  49. 49.
    Ganji F, Farahani SV, Farahani EV (2010) Iran Polym J 19:375–398Google Scholar
  50. 50.
    Kazemzadeh B, Hosseinzadeh H, Babazadeh M (2013) Biomed Pharm J 6:41–48CrossRefGoogle Scholar
  51. 51.
    Pourjavadi A, Mahdavinia GR (2006) Turk J Chem 30:595–608Google Scholar
  52. 52.
    Gueu S, Yao B, Adouby K, Ado G (2007) Int J Environ Sci Technol 4:11–17CrossRefGoogle Scholar
  53. 53.
    Langmuir I (1918) J Am Chem Soc 40:1361–1403CrossRefGoogle Scholar
  54. 54.
    Dada AO, Olalekan AP, Olatunya AM, Dada O (2012) IOSR JAC 3:38–45Google Scholar
  55. 55.
    Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Ind Eng Chem Fundam 5:212–223CrossRefGoogle Scholar
  56. 56.
    Ho YS, McKay G (1999) Process Biochem 34:451–465CrossRefGoogle Scholar
  57. 57.
    Naushad M, Alothman ZA, Sharma G (2015) Inamuddin. Ionics 21:1453–1459CrossRefGoogle Scholar
  58. 58.
    Alqadami AA, Naushad M, Alothman ZA, Ghfar AA (2017) ACS Appl Mater Interfaces 9:36026–36037CrossRefGoogle Scholar
  59. 59.
    Monash P, Niwas R, Pugazhenthi G (2011) Clean Technol Environ 13:141–151CrossRefGoogle Scholar
  60. 60.
    Cui W, Zhang Z, Li H, Zhu L, Liua H, Ran R (2015) RSC Adv 5:52966–52977CrossRefGoogle Scholar
  61. 61.
    Song Y, Song X, Cheng C, Zhao Z (2015) RSC Adv 5:87030–87042CrossRefGoogle Scholar
  62. 62.
    Flores AB, Cruz AC, Segura EG, Mendieta VS, Casados DAS, Guirado MAG, Gonzalez RB (2014) Environ Technol 35:1508–1519CrossRefGoogle Scholar
  63. 63.
    Pourjavadi A, Hosseini SH, Seidi F (2012) Rouhollah. Polym Int 62:1038–1044Google Scholar
  64. 64.
    Mohanty K, Naidu JT, Meikap BC, Biswas MN (2006) Ind Eng Chem Res 45:5165–5171CrossRefGoogle Scholar
  65. 65.
    Zhou Y, Zhang M, Wang X, Huang Q, Min Y, Ma T, Niu J (2014) Ind Eng Chem Res 53:5498–5506CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Post-Graduate Studies & Research in ChemistryMangalore UniversityMangalagangothri, DKIndia

Personalised recommendations