Advertisement

Novel Environmentally Friendly Superabsorbent Hydrogel Hybrids from Synthesized Star-Shaped Bio-based Monomers and Acrylic Acid

  • Alaleh Dabbaghi
  • Arash Jahandideh
  • Kourosh KabiriEmail author
  • Ali RamazaniEmail author
  • Mohammad J. Zohuriaan-mehr
Original paper
  • 2 Downloads

Abstract

During the past decades, production and applications of petroleum-based superabsorbents have grown dramatically; currently, superabsorbents are produced from acrylic acid, which consequently increase the environmental concerns. The high consumption rate of superabsorbent on the one hand, and their persistence in the environment from the other hand would make the waste of this material a potential hazard for the environment. These materials are not biodegradable, and if degraded hazardous derivatives would be released into soil and water. The current work presents the synthesis and the performance of a novel superabsorbent hydrogel, based on star-shaped bio-based compartments and acrylic acid. Herein, the synthesis of two bio-based star-shaped monomers will be reported based on the condensation reaction between hydroxyl and carboxylic acid end groups of a bio-acid and a bio-alcohol. The first monomer was synthesized from glycerin, succinic acid, lactic acid, itaconic acid, and acrylic acid. The second monomer was synthesized from glycerin, lactic acid, and methacrylic acid. The monomers structures were characterized via FT-IR and 1HNMR spectroscopies. The different portions of biobased monomers (10, 30, 50, and 70 wt%) were used in combination with the acrylic acid monomer to form hybrid superabsorbents. The swelling properties and the absorbency under load (AUL) of superabsorbents were investigated in turn. The maximum absorption capacities (398.49 and 90.10 g g−1 in water and saline solution, respectively) were observed when 30 wt% of acrylic acid backbone of the superabsorbent was replaced with the bio-based monomer. Moreover, economic and environmental profiles of the hybrid SAPs have been evaluated. The comparative environmental assessment performed using life cycle analysis method, based on the material and energy balances obtained from the available literature. While the economy of the hybrid SAPs production still suffers from the high price of the employed raw biomaterials during manufacturing, the better environmental profiles obtained for the hybrid SAPs.

Keywords

Superabsorbent Star-shaped Bio-based Hybrid Environmental profile Eco-friendly 

Notes

References

  1. 1.
    Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Polym Compos 32(2):277–289Google Scholar
  2. 2.
    Shahi S, Zohuriaan-Mehr MJ, Omidian H (2017) J Bioact Compat Polym 32(2):128–145Google Scholar
  3. 3.
    Azizi A, Kabiri K, Zohuriaan-Mehr MJ, Bouhendi H, Karami Z (2018) J Mater Res 33(16):2327–2335Google Scholar
  4. 4.
    Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MF, Rubira AF, Muniz EC (2015) Eur Polym J 72:365–385Google Scholar
  5. 5.
    Bulut Y, Akçay G, Elma D, Serhatlı IE (2009) J Hazard Mater 171(1–3):717–723Google Scholar
  6. 6.
    Jeong D, Joo SW, Hu Y, Shinde VV, Cho E, Jung S (2018) Eur Polym J 105:17–25Google Scholar
  7. 7.
    Yang ST, Park YS (2018) Drug Deliv Transl Res 8(3):702–707Google Scholar
  8. 8.
    Capanema NS, Mansur AA, de Jesus AC, Carvalho SM, de Oliveira LC, Mansur HS (2018) Int J Biol Macromol 106:1218–1234Google Scholar
  9. 9.
    Sharma S, Dua A, Malik A (2017) J Polym Res 24(7):104Google Scholar
  10. 10.
    Global market insights (2014) Super absorbent polymer market size—industry share report, 2025. https://www.gminsights.com/industry-analysis/synthetic-and-bio-super-absorbent-polymer-sap-market. Accessed 8 June 2019
  11. 11.
    Mukerabigwi JF, Lei S, Fan L, Wang H, Luo S, Ma X, Qin J, Huang X, Cao Y (2016) RSC Adv 6(38):31607–31618Google Scholar
  12. 12.
    Panwar NL, Kaushik SC, Kothari S (2011) Renew Sustain Energy Rev 15(3):1513–1524Google Scholar
  13. 13.
    Wool R, Sun XS (2011) Bio-based polymers and composites. Elsevier, AmsterdamGoogle Scholar
  14. 14.
    Werpy T, Petersen G (2004) Top value added chemicals from biomass. Results of screening for potential candidates from sugars and synthesis gas, vol 1. Department of Energy, Washington, DCGoogle Scholar
  15. 15.
    Chen Z, Liu M, Ma S (2005) React Funct Polym 62(1):85–92Google Scholar
  16. 16.
    Ma S, Liu M, Chen Z (2004) J Appl Polym Sci 93(6):2532–2541Google Scholar
  17. 17.
    Ma J, Li X, Bao Y (2015) RSC Adv 5(73):59745–59757Google Scholar
  18. 18.
    Shi W, Dumont MJ, Ly EB (2014) Eur Polym J 54:172–180Google Scholar
  19. 19.
    Zhang J, Li A, Wang A (2006) React Funct Polym 66(7):747–756Google Scholar
  20. 20.
    Essawy HA, Ghazy MB, El-Hai FA, Mohamed MF (2016) Int J Biol Macromol 89:144–151Google Scholar
  21. 21.
    Li A, Wang A, Chen J (2004) J Appl Polym Sci 92(3):1596–1603Google Scholar
  22. 22.
    Zohuriaan-Mehr MJ, Motazedi Z, Kabiri K, Ershad-Langroudi A, Allahdadi I (2006) J Appl Polym Sci 102(6):5667–5674Google Scholar
  23. 23.
    Liu P, Jiang L, Zhu L, Wang A (2014) Ind Eng Chem Res 53(11):4277–4285Google Scholar
  24. 24.
    Mayer CR, Thouvenot R, Lalot T (2000) Macromolecules 33(12):4433–4437Google Scholar
  25. 25.
    Bao Y, Ma J, Li N (2011) Carbohydr Polym 84(1):76–82Google Scholar
  26. 26.
    Zhang B, Cui Y, Yin G, Li X, Liao L, Cai X (2011) Polym Compos 32(5):683–691Google Scholar
  27. 27.
    Suo A, Qian J, Yao Y, Zhang W (2007) J Appl Polym Sci 103(3):1382–1388Google Scholar
  28. 28.
    Wu F, Zhang Y, Liu L, Yao J (2012) Carbohydr Polym 87(4):2519–2525Google Scholar
  29. 29.
    Bell BM, Briggs JR, Campbell RM, Chambers SM, Gaarenstroom PD, Hippler JG, Hook BD, Kearns K, Kenney JM, Kruper WJ, Schreck DJ (2008) Clean-Soil Air Water 36(8):657–661Google Scholar
  30. 30.
    Min YN, Yan F, Liu FZ, Coto C, Waldroup PW (2010) Int J Poult Sci 9(1):1–4Google Scholar
  31. 31.
    Cukalovic A, Stevens CV (2008) Biofuels, Bioprod Biorefin 2(6):505–529Google Scholar
  32. 32.
    Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Energy Environ Sci 6(5):1415–1442Google Scholar
  33. 33.
    Oh H, Wee YJ, Yun JS, Han SH, Jung S, Ryu HW (2005) Bioresour Technol 96(13):1492–1498Google Scholar
  34. 34.
    Willke T, Vorlop K-D (2001) Appl Microbiol Biotechnol 56(3–4):289–295Google Scholar
  35. 35.
    Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Chem Eng Technol 31(5):647–654Google Scholar
  36. 36.
    Dong CM, Qiu KY, Gu ZW, Feng XD (2002) J Polym Sci Part A 40(3):409–415Google Scholar
  37. 37.
    Cameron DJA, Shaver MP (2011) Chem Soc Rev 40(3):1761–1776Google Scholar
  38. 38.
    Schaefgen JR, Flory PJ (1948) JACS 70(8):2709–2718Google Scholar
  39. 39.
    Jahandideh A, Muthukumarappan K (2017) Eur Polym J 87:360–379Google Scholar
  40. 40.
    Esmaeili N, Jahandideh A, Muthukumarappan K, Åkesson D, Skrifvars M (2017) J Appl Polym Sci 134(39):45341Google Scholar
  41. 41.
    Jahandideh A, Esmaeili N, Muthukumarappan K (2017) Polym Int 66(7):1021–1030Google Scholar
  42. 42.
    Jahandideh A, Esmaeili N, Muthukumarappan K (2018) J Polym Environ 26(5):2072–2085Google Scholar
  43. 43.
    Jahandideh A, Esmaeili N, Muthukumarappan K (2018) Polym Degrad Stab 153:201–209Google Scholar
  44. 44.
    Finne A, Albertsson AC (2003) J Polym Sci Part A 41(9):1296–1305Google Scholar
  45. 45.
    Aloorkar NH, Kulkarni AS, Patil RA, Ingale DJ (2012) Int J Pharm Sci Nanotech 5:1675–1684Google Scholar
  46. 46.
    Keys KB, Andreopoulos FM, Peppas NA (1998) Macromolecules 31(23):8149–8156Google Scholar
  47. 47.
    Nagahama K, Ouchi T, Ohya Y (2008) Adv Funct Mater 18(8):1220–1231Google Scholar
  48. 48.
    Park SY, Han DK, Kim SC (2001) Macromolecules 34(26):8821–8824Google Scholar
  49. 49.
    Dong P, Wang X, Gu Y, Wang Y, Wang Y, Gong C, Luo F, Guo G, Zhao X, Wei Y, Qian Z (2010) Colloids Surf A 358(1–3):128–134Google Scholar
  50. 50.
    Zhang H, Yan Q, Kang Y, Zhou L, Zhou H, Wu S (2012) Polymer 53(17):3719–3725Google Scholar
  51. 51.
    Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) J Environ Manag 91(1):1–21Google Scholar
  52. 52.
    Jahandideh A, Johnson TJ, Esmaeili N, Johnson MD, Richardson JW, Muthukumarappan K, Anderson GA, Halfmann C, Zhou R, Gibbons WR (2017) Algal Res 23:1–11Google Scholar
  53. 53.
    Jahandideh A, Muthukumarappan K (2016) Eur Polym J 83:344–358Google Scholar
  54. 54.
    Dabbaghi A, Jahandideh A, Kabiri K, Ramazani A, Zohuriaan-Mehr MJ (2019) Polym Plast Technol Eng 7:1–13Google Scholar
  55. 55.
    Kreß HJ, Heitz W (1981) Rapid Commun 2(6–7):427–434Google Scholar
  56. 56.
    Tarcha PJ, Su L, Baker T, Langridge D, Shastri V, Langer R (2001) J Polym Sci Part A 39(24):4189–4195Google Scholar
  57. 57.
    Salimi H, Pourjavadi A, Seidi F, Jahromi PE, Soleyman R (2010) J Appl Polym Sci 117(6):3228–3238Google Scholar
  58. 58.
    Li A, Wang A, Chen J (2004) J Appl Polym Sci 94(5):1869–1876Google Scholar
  59. 59.
    Chang S, Kim M, Oh S, Min JH, Kang D, Han C, Ahn T, Koh WG, Lee H (2018) Polymer 145:174–183Google Scholar
  60. 60.
    Ghasri M, Jahandideh A, Kabiri K, Bouhendi H, Zohuriaan-Mehr MJ, Moini N (2019) Polym Adv Technol 30(2):390–399Google Scholar
  61. 61.
    Moini N, Kabiri K, Zohuriaan-Mehr Mohammad J, Omidian H, Esmaeili N (2017) Polym Adv Technol 28(9):1132–1147Google Scholar
  62. 62.
    Wang Y, Liu M, Ni B, Xie L (2012) Ind Eng Chem Res 51(3):1413–1422Google Scholar
  63. 63.
    Pourjavadi A, Amini-Fazl MS, Ayyari M (2007) Express Polym Lett 1:488–494Google Scholar
  64. 64.
    Petrescu L, Fermeglia M, Cormos CC (2016) J Clean Prod 133:294–303Google Scholar
  65. 65.
    Thannimalay L, Yusoff S, Zawawi NZ (2013) Aust J Basic Appl Sci 7:421–431Google Scholar
  66. 66.
    Cok B, Tsiropoulos I, Roes AL, Patel MK (2014) Biofuels Bioprod Biorefin 8(1):16–29Google Scholar
  67. 67.
    Malça J, Coelho A, Freire F (2014) Appl Energy 114:837–844Google Scholar
  68. 68.
    Patel MK, Crank M, Dornburg V, Hermann BG, Roes AL, Hüsing B, Overbeek LV, Terragni F, Recchia E (2006) Medium and long-term opportunities and risks of the biotechnological production of bulk chemicals from renewable resources. UU CHEM NW&S (Copernicus)Google Scholar
  69. 69.
    Moini N, Kabiri K (2015) Iran Polym J 24(11):977–987Google Scholar
  70. 70.
    Dreyer LC, Niemann AL, Hauschild MZ (2003) Int J Life Cycle Assess 8(4):191–200Google Scholar
  71. 71.
    Tan HW, Aziz AA, Aroua MK (2013) Renew Sustain Energy Rev 27:118–127Google Scholar
  72. 72.
    Morales M, Dapsens Pierre PY, Giovinazzo I, Witte J, Mondelli C, Papadokonstantakis S, Hungerbühler K, Pérez-Ramírez J (2015) Energy Environ Sci 8(2):558–567Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ZanjanZanjanIran
  2. 2.Adhesive and Resin DepartmentIran Polymer and Petrochemical InstituteTehranIran
  3. 3.Biomass Conversion Science and Technology (BCST) DivisionIran Polymer and Petrochemical InstituteTehranIran
  4. 4.Research Institute of Modern Biological Techniques (RIMBT)University of ZanjanZanjanIran

Personalised recommendations