Journal of Polymers and the Environment

, Volume 27, Issue 9, pp 1861–1877 | Cite as

Development of Tailor-Made Superabsorbent Polymers: Review of Key Aspects from Raw Material to Kinetic Model

  • Rodrigo V. A. Santos
  • Glória M. N. Costa
  • Karen V. PontesEmail author


The ability of superabsorbent polymers (SAP) to absorb and retain a large amount of water and/or aqueous solution enables their applications in areas such as agriculture, medicine and water treatment. This versatility has attracted the attention of researchers interested in developing new materials, especially bio-based polymers. As a result, there are numerous studies reporting different types of monomers and crosslinks to produce SAP. Conversely, in the literature there is a lack of discussion of the modeling approaches to describe SAP production. This paper makes a comprehensive and systematic review of the main issues for the synthesis of new SAP materials: monomer and crosslink types, as well as the kinetic model. A database on the raw materials to produce SAP for the main applications should be useful for those interested in producing new SAP materials. The mathematical model correlates structural properties with the synthesis conditions, thus supporting the development of tailor-made products.


Superabsorbet polymer Bio-based polymer Kinetic model Crosslinking reaction 



The authors would like to thank the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), for their financial support.

Supplementary material

10924_2019_1485_MOESM1_ESM.docx (9.5 mb)
Supplementary material 1 (DOCX 9745 kb)


  1. 1.
    Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology. Wiley, New YorkGoogle Scholar
  2. 2.
    Grand View Research (2018). Super absorbent polymer market analysis report by application (female hygiene products, baby diapers, agriculture, adult incontinence products), by region, and segment forecasts, 2018–2025. Report ID: 978-1-68038-617-2;Google Scholar
  3. 3.
    Zohuriaan-Mehr MJ, Kabiri K (2008) Iran Polym J 451:477Google Scholar
  4. 4.
    Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2010) Polym Compos 277:289Google Scholar
  5. 5.
    Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) J Mat Sci 5711:5735Google Scholar
  6. 6.
    Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Iran Polym J 375:398Google Scholar
  7. 7.
    Laftah WA, Hashim S, Ibrahim AN (2011) Polym Plast Technol Eng 1475:1486Google Scholar
  8. 8.
    Maitra J, Shukla VK (2014) J Polym Sci A 25:31Google Scholar
  9. 9.
    Faheem U, Muhammad BH, Javed F, Ahmad Z, Akil HM (2015) Mater Sci Eng C 414:433Google Scholar
  10. 10.
    Gemeinhart RA, Chen J, Park H, Park K (2000) J Biomater Sci 1371:1380Google Scholar
  11. 11.
    Lee WF, Huang YC (2007) J Appl Polym Sci 1992:1999Google Scholar
  12. 12.
    Omidian H, Rocca J, Park K (2005) J Control Release 3:12Google Scholar
  13. 13.
    Ahmed EM (2015) J Adv Res 105:121Google Scholar
  14. 14.
    Athawale VD, Lele V (2001) Starch/Stärke 7:13Google Scholar
  15. 15.
    Dutkiewicz JK (2002) J Biomed Mater Res B 373:381Google Scholar
  16. 16.
    Puoci F, Iemma F, Spizzirri UG, Cirillo G, Curcio M, Picci N (2008) Am J Agric Biol Sci 299:314Google Scholar
  17. 17.
    Caló E, Khutoryanskiy VV (2015) Eur Polym J 252:267Google Scholar
  18. 18.
    Halake K, Kim HJ, Birajdar M, Kim BS, Bae H, Lee C, Kim YJ, Kim S, Ahn S, An SY, Jung SH, Lee J (2016) J Ind Eng Chem 16:22Google Scholar
  19. 19.
    Gonçalves D, Pinto VD, Dias CS, Costa PF (2011) Macromol Symp 107:125Google Scholar
  20. 20.
    Mikos AG, Takoudis CG, Peppas NA (1986) Macromolecules 2174:2182Google Scholar
  21. 21.
    Mikos AG, Takoudis CG, Peppas NA (1987) Polymer 998:1004Google Scholar
  22. 22.
    Mikos AG, Peppas NA (1987) J Cont Rel 53:62Google Scholar
  23. 23.
    Frank M (2012) Superabsorbents. Ullman’s encyclopedia of industrial chemistry. Wiley, WeinheimGoogle Scholar
  24. 24.
    Wack H, Ulbricht M (2007) In: Proceedings of the first international conference on self healing materials, Noordwijk aan Zee, The Netherlands;Google Scholar
  25. 25.
    Sawut A, Yimit M, Sun W, Nurulla I (2014) Carboh Polym 231:239Google Scholar
  26. 26.
    Ferfera-Harrar H, Aionuaz N, Dairi N, Hadj-Hamou AS (2014) J App Polym Sci 131:39747CrossRefGoogle Scholar
  27. 27.
    Anirudhan TS, Rijith S, Suchithra PS (2011) J App Polym Sci 122:874–884CrossRefGoogle Scholar
  28. 28.
    Li Q, Liu J, Yue Q, Gao B (2014) J App Polym Sci 39748:39756Google Scholar
  29. 29.
    Jaber F (2012) New routes for synthesis of environmentally friendly superabsorbent polymer. MSc. Thesis. An-Najah National University, Nablus, Palestine;Google Scholar
  30. 30.
    Candido JS, Leitao CF, Ricardo MPS, Feitosa PA, Muniz ED, Rodrigues HÁ (2012) J App Polym Sci 879:887Google Scholar
  31. 31.
    Zhong K, Lin ZT, Zheng XL, Jiang GB, Fang YS, Mao XY, Liao ZW (2013) Carbohydr Polym 1367:1376Google Scholar
  32. 32.
    Yang Y, Tong Z, Geng Y, Li Y, Zhang M (2013) J Agr Food Chem 8166:8174Google Scholar
  33. 33.
    Salam A, Lucia L, Jameel H (2015) ACS Sustain Chem Eng 524:532Google Scholar
  34. 34.
    Gao J, Yanga Q, Ran F, Ma G, Lei Z (2016) Appl Clay Sci 739:747Google Scholar
  35. 35.
    Li X, Li Q, Xu X, Su Y, Yue Q, Gao B (2016) J Taiwan Inst Chem E 564:572Google Scholar
  36. 36.
    Qiao D, Liu H, Yu L, Bao X, Simon GP, Petinakis E, Chen L (2016) Carbohydr Polym 146:154Google Scholar
  37. 37.
    Wen P, Han Y, Wu Z, He Y, Ye B, Wang J (2017) Arab J Chem 922:934Google Scholar
  38. 38.
    Zhou T, Wang Y, Huang S, Zhao Y (2018) Sci Total Environ 422:430Google Scholar
  39. 39.
    Mordor Intelligence (2015) Global super absorbent polymer (SAP) market reportGoogle Scholar
  40. 40.
    Kabiri K, Faraji-Dana S, Zohuriaan-Mehr MJ (2005) Polym Adv Tech 659:666Google Scholar
  41. 41.
    Wang LF, Rhim JW (2015) Int J Biol Macromol 460:468Google Scholar
  42. 42.
    Xu Y, Zhan C, Fan L, Wang L, Zheng H (2007) Int J Pharm 329:337Google Scholar
  43. 43.
    Bai MY, Hu YM (2014) J Microencapsul 373:381Google Scholar
  44. 44.
    Jeong JH, Kim EH, Han GD, Nah JW, It Y, Son TI (2016) J Ind Eng Chem 33:40Google Scholar
  45. 45.
    Choi C, Nam JP, Nah JW (2016) J Ind Eng Chem 1:10Google Scholar
  46. 46.
    Liu W, Wu ZL, Wang YJ, Li R, Yin NN, Jiang JX (2015) J Ind Eng Chem 138:144Google Scholar
  47. 47.
    Barata JF, Pinto RJ, Serra VI, Silvestre AJ, Trindade T, Neves MP, Cavaleiro JA, Daina S, Sadocco P, Rocha Freire CS (2016) Biomacromolecules 1395:1403Google Scholar
  48. 48.
    Idris A, Ismail NS, Hassan N, Misran E, Ngomsik AF (2012) J Ind Eng Chem 1582:1589Google Scholar
  49. 49.
    Liu Y, Chen C (2016) Adv Drug Deliv Rev 76:89Google Scholar
  50. 50.
    Bergera J, Reista M, Mayera JM, Feltb O, Gurny R (2004) Eur J Pharm Biopharm 35:52Google Scholar
  51. 51.
    Wang L, Peng Q, Li S, Dub L, Cai H (2013) J Ind Eng Chem 655:658Google Scholar
  52. 52.
    Cui L, Xiong Z, Guo Y, Liu Y, Zhao J, Zhang C, Zhu P (2015) Carbohydr Polym 330:337Google Scholar
  53. 53.
    Qin Y, Guo XW, Li L, Wang HW, Kim W (2013) J Med Food 487:498Google Scholar
  54. 54.
    Cho HJ, Chung M, Shim MS (2015) J Ind Eng Chem 15:25Google Scholar
  55. 55.
    Wang MH, Kim JC (2015) J Ind Eng Chem 206:212Google Scholar
  56. 56.
    Negm NA, Sheikhb RE, El-Farargyb AF, Hefnia HH, Bekhit M (2015) J Ind Eng Chem 526:534Google Scholar
  57. 57.
    Lin W, Li Q, Zhu T (2012) J Ind Eng Chem 934:940Google Scholar
  58. 58.
    Zou P, Yang X, Wang J, Li Y, Yu H, Zhang Y, Liu G (2016) Food Chem 1174:1181Google Scholar
  59. 59.
    Je JY, Park PJ, Kim SK (2004) Food Chem Toxicol 381:387Google Scholar
  60. 60.
    Priya P, Raja A, Raj V (2015) Cellulose 699:712Google Scholar
  61. 61.
    Tripathi S, Mehrotra GK, Dutta PK (2011) Bull Mater Sci 29:35Google Scholar
  62. 62.
    Liu F, Antoniou J, Li Y, Majeed H, Liang R, Ma Y, Ma J, Zhong F (2016) Food Hydrocoll 291:300Google Scholar
  63. 63.
    Kim J, Hwang J, Kang H, Choi J (2015) J Ind Eng Chem 44:48Google Scholar
  64. 64.
    Muzzarelli RA, Boudrant J, Meyer D, Manno N, DeMarchis M, Paoletti MG (2012) Carbohydr Polym 995:1012Google Scholar
  65. 65.
    Du YZ, Wang L, Yuan H, Wei XH, Hu FQ (2009) Colloids Surf B Biointerfaces 257:263Google Scholar
  66. 66.
    Guo X, Qiu F, Dong K, Zhou X, Qi J, Zhou Y, Yang D (2012) J Ind Eng Chem 2177:2183Google Scholar
  67. 67.
    Giri TK, Choudhary C, Alexander A, Ajazuddin A, Badwaik H, Tripathy M, Tripathi DK (2013) Indian J Pharm Sci 619:627Google Scholar
  68. 68.
    Cui S, Yao B, Suna X, Hua J, Zhoub Y, Liu Y (2016) Mater Sci Eng, C 885:893Google Scholar
  69. 69.
    Zhou S, Xue A, Zhang Y, Li M, Li K, Zhao Y, Xing W (2015) Appl Clay Sci 220:229Google Scholar
  70. 70.
    Kim HM, Kang YL, Chung WJ, Kyeong S, Jeong S, Kang H, Jeong C, Rho WY, Kim DH, Jeong DH, Lee YS, Jun BH (2015) J Ind Eng Chem 158:162Google Scholar
  71. 71.
    Villaça JC, Silva LC, Barbosa LH, Rodrigues CR, Lira LM, Carmo FA, Sousa VP, Tavares MI, Cabral LM (2015) J Ind Eng Chem 76(44):48Google Scholar
  72. 72.
    Hui B, Zhang Y, Ye L (2015) J Ind Eng Chem 868:876Google Scholar
  73. 73.
    Pulicharla R, Marques C, Das RK, Rouissi T, Brar SK (2016) Int J Biol Macromol 171:178Google Scholar
  74. 74.
    Popa MI, Aelenei N, Popa VI, Andrei D (2000) React Funct Polym 35:43Google Scholar
  75. 75.
    Zhang H, Huang S, Yang J, Zhao Y (2015) Food Hydrocoll 260:273Google Scholar
  76. 76.
    Gibis M, Ruedt C, Weiss J (2016) Food Res Int 105:113Google Scholar
  77. 77.
    Venkatachalam D, Vediappan V, Kaliappa S (2013) J App Pol Sci 1350:1361Google Scholar
  78. 78.
    Senna A, Menezes AJ, Botaro VR (2013) Polímeros 59:64Google Scholar
  79. 79.
    Sadeghi M, Hosseinzadeh H (2008) J Bio Comp Pol 381:404Google Scholar
  80. 80.
    Hild G, Okasha R (1985) Die Makromol Chem 93:110Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rodrigo V. A. Santos
    • 1
  • Glória M. N. Costa
    • 1
  • Karen V. Pontes
    • 1
    Email author
  1. 1.Industrial Engineering Graduate ProgramFederal University of BahiaSalvadorBrazil

Personalised recommendations