Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 8, pp 1828–1842 | Cite as

Effective Adsorption of Cr(VI) by High Strength Chitosan/Montmorillonite Composite Hydrogels Involving Spirulina Biomass/Microalgae

  • Emre Tekay
  • Demet Aydınoğlu
  • Sinan ŞenEmail author
Original paper
  • 51 Downloads

Abstract

The “3-in-1 type” biopolymer composite (chitosan/montmorillonite clay/biosorbent) hydrogels were produced and used as adsorbents for Cr(VI) ion. Na-Montmorillonite (NaMMT) clay was modified with Spirulina (Sp) biosorbent by using lyophilization based “cryoscopic expansion” (C-XP) method. The Sp immobilized MMT (SpMMT) clay containing hydrogels were found to have an open/extended form of Sp structure on their pores’ walls, presenting all possible receptor groups for adsorption of Cr(VI) ions. SpMMT loaded hydrogels showed higher adsorption capacities than NaMMT loaded ones. The physically crosslinked hydrogel including only 1% SpMMT (1SpM-H) clay exhibited 150% higher adsorption capacity as compared to neat chitosan hydrogel even in 50 ppm Cr(VI) solution. The same composite hydrogel was found to adsorp about 780% Cr(VI) with respect to the clay’s weight while individual uses of Sp and MMT can remove only about 4.80 and 0.36% Cr(VI) with respect to their weights. The pseudo-first order model was found to be the most suitable for the kinetic data of NaMMT loaded hydrogels while that of SpMMT containing hydrogels followed the pseudo-second order kinetics. The isotherm data of all the hydrogels exhibited a better fit to the Freundlich and Sips model. The maximum adsorption capacity (3333 mg g−1) calculated by Sips model was achieved via the hydrogel having 1% SpMMT which is in good agreement with the experimental kinetic data. The highest adsorption with the lowest amount of SpMMT clay could be attributed to its looser Sp network structure whose functional groups are in long-distance, releasing more adsorption sites for the Cr(VI). The highest compression modulus and toughness were also obtained with the 1SpM-H hydrogel which is probably due to increased physical and reversible interactions between chitosan molecules and SpMMT clay layers at optimum clay loading (1%).

Keywords

Biopolymer Composite hydrogel Adsorption Chromium(VI) Mechanical properties 

Notes

Acknowledgements

The financial support provided by Yalova University Scientific Research Projects Coordination Department (project no. 2015/BAP/117) is gratefully acknowledged.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yusof AM, Malek NANN (2009) J Hazard Mater 162:1019CrossRefGoogle Scholar
  2. 2.
    Bai S, Abraham TE (2001) Bioresour Technol 79:73CrossRefGoogle Scholar
  3. 3.
    Prigione V, Zerlottin M, Refosco D, Tigini V, Anastasi A, Varese GC (2009) Bioresour Technol 100:2770CrossRefGoogle Scholar
  4. 4.
    Gupta V, Rastogi A (2009) J Hazard Mater 163:396CrossRefGoogle Scholar
  5. 5.
    Maryuk O, Pikus S, Majdan M, Skrzypek H, Zięba E (2005) Mater Lett 59:2015CrossRefGoogle Scholar
  6. 6.
    Aydınoğlu D, Akgül Ö, Bayram V, Şen S (2014) Polym Plast Technol Eng 53:1706CrossRefGoogle Scholar
  7. 7.
    Nasernejad B, Zadeh TE, Pour BB, Bygi ME, Zamani A (2005) Process Biochem 40:1319CrossRefGoogle Scholar
  8. 8.
    Tekay E, Şen S, Aydınoğlu D, Nugay N (2016) e-Polymers 16:15–24CrossRefGoogle Scholar
  9. 9.
    Arunakumara K, Zhang X, Song X (2008) JOUC 7:397Google Scholar
  10. 10.
    Chojnacka K, Chojnacki A, Gorecka H (2005) Chemosphere 59:75CrossRefGoogle Scholar
  11. 11.
    Doshi H, Ray A, Kothari I (2007) Biotechnol Bioeng 96:1051CrossRefGoogle Scholar
  12. 12.
    Wang W, Zhao Y, Yi H, Chen T, Kang S, Li H, Song S (2017) Nanotechnology 29:025605CrossRefGoogle Scholar
  13. 13.
    Kang S, Zhao Y, Wang W, Zhang T, Chen T, Yi H, Rao F, Song S (2018) Appl Surf Sci 448:203CrossRefGoogle Scholar
  14. 14.
    Wang W, Zhao Y, Bai H, Zhang T, Ibarra-Galvan V, Song S (2018) Carbohydr Polym 198:518CrossRefGoogle Scholar
  15. 15.
    Hoffman AS (2012) Adv Drug Deliv Rev 64:18CrossRefGoogle Scholar
  16. 16.
    Wang X, Du Y, Luo J, Lin B, Kennedy JF (2007) Carbohydr Polym 69:41CrossRefGoogle Scholar
  17. 17.
    Wang M (2003) Biomaterials 24:2133CrossRefGoogle Scholar
  18. 18.
    Kithva P, Grøndahl L, Martin D, Trau M (2010) J Mater Chem 20:381CrossRefGoogle Scholar
  19. 19.
    Lavorgna M, Piscitelli F, Mangiacapra P, Buonocore GG (2010) Carbohydr Polym 82:291CrossRefGoogle Scholar
  20. 20.
    Tang C, Xiang L, Su J, Wang K, Yang C, Zhang Q, Fu Q (2008) J Phys Chem B 112:3876CrossRefGoogle Scholar
  21. 21.
    Díaz-Visurraga J, Melendrez M, Garcia A, Paulraj M, Cardenas G (2010) J Appl Polym Sci 116:3503Google Scholar
  22. 22.
    Yang X, Tu Y, Li L, Shang S, Tao X (2010) ACS Appl Mater Interfaces 2:1707CrossRefGoogle Scholar
  23. 23.
    Mert HH, Tekay E, Nugay N, Nugay T, Şen S (2018) Polym Eng Sci 58:1229CrossRefGoogle Scholar
  24. 24.
    Kummer G, Schonhart C, Fernandes M, Dotto G, Missio A, Bertuol D, Tanabe E (2018) J Polym Environ 26:4073CrossRefGoogle Scholar
  25. 25.
    Eaton ADCLS, Greenberg AE, Franson MAH (2005) In: Eaton AD (ed) Standard methods for the examination of water and wastewater. American public health association, Washington DC, p 49Google Scholar
  26. 26.
    Palantöken S, Tekay E, Şen S, Nugay T, Nugay N (2016) Polym Compos 37:2770CrossRefGoogle Scholar
  27. 27.
    Tu J, Cao Z, Jing Y, Fan C, Zhang C, Liao L, Liu L (2013) Compos Sci Technol 85:126CrossRefGoogle Scholar
  28. 28.
    Liu M, Wu C, Jiao Y, Xiong S, Zhou C (2013) J Mater Chem B 1:2078CrossRefGoogle Scholar
  29. 29.
    Ansari R, Delavar AF (2010) J Polym Environ 18:202CrossRefGoogle Scholar
  30. 30.
    Vachoud L, Zydowicz N, Domard A (1997) Carbohydr Res 302:169CrossRefGoogle Scholar
  31. 31.
    Dotto G, Lima E, Pinto L (2012) Bioresour Technol 103:123CrossRefGoogle Scholar
  32. 32.
    Mahl CR, Taketa TB, Bataglioli RA, de Arruda EJ, Beppu MM (2018) J Polym Environ 26:4338CrossRefGoogle Scholar
  33. 33.
    Theivarasu C, Mylsamy S (2010) Int J Eng Sci Technol 2:6284Google Scholar
  34. 34.
    Akar ST, Yetimoglu Y, Gedikbey T (2009) Desalination 244:97CrossRefGoogle Scholar
  35. 35.
    Hoffman AS (2002) Adv Drug Deliv Rev 54:3CrossRefGoogle Scholar
  36. 36.
    Helvacıoğlu E, Aydın V, Nugay T, Nugay N, Uluocak BG, Şen S (2011) J Polym Res 18:2341CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Polymer EngineeringYalova UniversityYalovaTurkey
  2. 2.Department of Food Process TechnologiesYalova UniversityYalovaTurkey

Personalised recommendations