Journal of Polymers and the Environment

, Volume 27, Issue 8, pp 1821–1827 | Cite as

Effect of Talc on Mechanical Characteristics and Fracture Toughness of Poly(lactic acid)/Poly(butylene succinate) Blend

  • Weraporn Pivsa-ArtEmail author
  • Sommai Pivsa-Art
Original paper


This research investigates the effect of talc additive on physical and mechanical characteristics of poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) polymer blend. In the study, the talc content is varied between 0, 5, 10, and 20 parts per hundred resin (phr) and the PLA/PBS ratio is 80/20 w/w. The results reveal that talc enhances the mechanical properties of PLA/PBS blend. Specifically, tensile strength, Young’s modulus, and impact strength of PLA/PBS/talc composite increase as talc content rises. In addition, fracture toughness increases substantially as talc quantity is raised. The enhanced fracture toughness is attributable to nucleation of talc which promotes crystallization of PLA while hindering PBS crystal growth. Moreover, morphology analysis shows efficient distribution of talc in the polymer matrix.


Poly(lactic acid) Poly(butylene succinate) Talc Fracture toughness Composite 



The authors would like to express sincere gratitude to the National Research Council of Thailand (NRCT) for research grant.


  1. 1.
    Kamm B, Gruber PR, Kamm M (2010) Biorefineries—industrial processes and products: status quo and future directions. Wiley, Hoboken, p 949Google Scholar
  2. 2.
    Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide research. J Biores Technol 101:8493CrossRefGoogle Scholar
  3. 3.
    Tsuji H (2008) Polylactic Acid -Shokubutsu Yurai Plastic no Kiso to Ouyou. Yoneda Shuppan Co. Ltd, TokyoGoogle Scholar
  4. 4.
    Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. J Macromol Biosci 4:835CrossRefGoogle Scholar
  5. 5.
    Auras RA, Singh SP, Singh JJ (2005) Evaluation of oriented poly(lactide) polymers with existing PET and oriented PS for fresh food service containers. J Packag Technol Sci 18:207CrossRefGoogle Scholar
  6. 6.
    Vainionpaa S, Rokkanen P, Tormal P (1989) Surgical application of biodegradable polymers in humman tissues. J Prog Polym Sci 14:679CrossRefGoogle Scholar
  7. 7.
    Pivsa-Art W, Fujii K, Nomura K, Aso Y, Ohara H, Yamane H (2016) The effect of poly(ethylene glycol) as plasticizer in blends of poly(lactic acid) and poly(butylene succinate). J Appl Polym Sci 133(8):43044CrossRefGoogle Scholar
  8. 8.
    Jompang L, Thumsorn S, Wong On J, Surin P, Apawet C, Chaichalermwong T, Kaabbuathong N, O-Charoen N, Srisawat N (2013) Poly(lactic acid) and poly(butylene succinate) blend fibers prepared by melt spinning technique. Energy Proc 34:493CrossRefGoogle Scholar
  9. 9.
    Jiang L, Wolcott MP, Zhang J (2006) Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromol 7(1):199CrossRefGoogle Scholar
  10. 10.
    Bhari K, Mitomo H, Enjoji T, Yoshii F, Makuuchi K (1998) Radiation cross linked poly (butylene succinate) foam and its biodegradation. Polym Degrad Stab 62:551CrossRefGoogle Scholar
  11. 11.
    Doi Y, Kasuya K, Abe H, Koyama N, Ishiwatara S, Takagi K, Yoshida Y (1996) Evaluation of biodegradabilities of biosynthetic and chemosynthetic polyesters in river water. J Polym Degrad Stab 51:281CrossRefGoogle Scholar
  12. 12.
    Bhatia A, Gupta RK, Bhattacharya SN, Choi HJ (2007) Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application. J Korea-Austr Rheol 19:125Google Scholar
  13. 13.
    Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317CrossRefGoogle Scholar
  14. 14.
    Wang XH, Zhou JJ, Li L (2007) Multiple melting behavior of poly(butylene succinate). Eur Polym J 43:3163CrossRefGoogle Scholar
  15. 15.
    Doi Y, Fukuda K (1994) Biodegradable plastics and polymer. Stud Polym Sci 12:627Google Scholar
  16. 16.
    Ujimaki T (1998) Processability and properties of aliphatic polyesters. Polym Degrad Stab 59:209CrossRefGoogle Scholar
  17. 17.
    Shih YF, Chen LS, Jeng RJ (2008) Preparation and properties of biodegradable PBS/multi-walled carbon nanotube nanocomposites. Polymer 49:4602CrossRefGoogle Scholar
  18. 18.
    Lapčík L, Jindrová P, Lapčíková B, Tamblyn R, Greenwood R, Rowson N (2008) Effect of the talc filler content on the mechanical properties of polypropylene composites. J Appl Polym Sci 110(5):2742CrossRefGoogle Scholar
  19. 19.
    Stamhuis JE (1988) Mechanical-properties and morphology of polypropylene composites. 3. Short glass-fiber reinforced elastomer modified polypropylene. Polym Compos 9(4):280CrossRefGoogle Scholar
  20. 20.
    Battegazzore D, Bocchini S, Frache A (2011) Crystallization kinetics of poly(lactic acid)-talc composites. Polym Lett 1(5):849CrossRefGoogle Scholar
  21. 21.
    Shibata M, Inoue Y, Miyoshi M (2006) Mechanical properties, morphology, and crystallization behavior of blends of poly(l-lactide) with poly(butylene succinate-co-l-lactate) and poly(butylene succinate). Polymer 47:3557CrossRefGoogle Scholar
  22. 22.
    Shakoor A, Thomas NL (2014) Talc as a nucleating agent and reinforcing filler in poly(lactic acid) composites. Polym Eng Sci 54(1):64CrossRefGoogle Scholar
  23. 23.
    Battegazzore D, Bocchini S, Frache A (2011) Crystallization kinetics of poly(lactic acid)-talc composites. Exp Polym Lett 5(10):849CrossRefGoogle Scholar
  24. 24.
    Huang A, Yu P, Jing X, Mi HY, Geng LH, Chen BY, Peng XF (2016) The effect of talc on the mechanical, crystallization and foaming properties of poly (lactic acid). J Macrom Sci Part B 55(9):908CrossRefGoogle Scholar
  25. 25.
    Akbari A, Jawaid M, Hassan A, Balakrishnan H (2013) Epoxidized natural rubber toughened polylactic acid/talc composites: mechanical, thermal, and morphological properties. J Comp Mat 48(7):1Google Scholar
  26. 26.
    Pivsa-Art W, Fujii K, Nomura K, Aso Y, Ohara H, Yamane H (2016) Isothermal crystallization kinetics of talc-filled poly (lactic acid) and poly (butylene succinate) blends. J Polym Res 23(8):144CrossRefGoogle Scholar
  27. 27.
    Picard E, Espuche E, Fulchiron R (2011) Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl Clay Sci 53:58CrossRefGoogle Scholar
  28. 28.
    Hassouna F, Raquez JM, Addiego F, Dubois P, Toniazzo Y, Ruch D (2011) New approach on the development of plasticized polylactide (PLA): grafting of poly (ethylene glycol) (PEG) via reactive extrusion. Eur Polym J 47:2134CrossRefGoogle Scholar
  29. 29.
    Ren ZJ, Dong LS, Yang YM (2006) Dynamic mechanical and thermal properties of plasticized poly(lactic acid). J Appl Polym Sci 101:1583CrossRefGoogle Scholar
  30. 30.
    Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym Test 43:27CrossRefGoogle Scholar
  31. 31.
    Asabia L, Jafari SH, Khonakdar HA, Hussler L, Wagenknecht U, Heinrich G (2013) Non-isothermal crystallization behavior of PLA/LLDPE/nanoclay hybrid: synergistic role of LLDPE and clay. Thermochim Acta 565:102CrossRefGoogle Scholar
  32. 32.
    Hwang SY, Yoo ES, Im SS (2012) The synthesis of copolymers, blends and composites based on poly(butylene succinate). Polym J 44:1179CrossRefGoogle Scholar
  33. 33.
    Ihn KJ, Yoo ES, Im SS (1995) Structure and morphology of poly(tetramethylene succinate) crystals. Macromol 28:2460CrossRefGoogle Scholar
  34. 34.
    Piorkowska E, Kulinski Z, Galeski A, Masirek R (2006) Plasticization of semicrystalline poly(l-lactide) with poly(propylene glycol). Polymer 47:7178CrossRefGoogle Scholar
  35. 35.
    García-Campo MJ, Boronat T, Quiles-Carrillo L, Balart R, Montanes N (2018) Manufacturing and characterization of toughened poly(lactic acid) (PLA) formulations by ternary blends with biopolyesters. Polymer 10:3CrossRefGoogle Scholar
  36. 36.
    Yao SS, Pang QQ, Song R, Jin FL, Park SJ (2016) Fracture toughness improvement of poly(lactic acid) with silicon carbide whiskers. Macromol Res 24(11):961CrossRefGoogle Scholar
  37. 37.
    Jin FL, Pang QQ, Zhang TY, Park SJ (2015) Synergistic reinforcing of poly(lactic acid)-based systems by polybutylene succinate and nano-calcium carbonate. J Ind Eng Chem 32:77CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical and Materials Engineering, Faculty of EngineeringRajamangala University of Technology ThanyaburiPathum ThaniThailand
  2. 2.Department of Materials and Metallurgical Engineering, Faculty of EngineeringRajamangala University of Technology ThanyaburiPathum ThaniThailand

Personalised recommendations