Journal of Polymers and the Environment

, Volume 27, Issue 8, pp 1807–1820 | Cite as

New Thermoplastic Vulcanizate Based on Acetoacetoxy Functionalized Natural Rubber/Polyamide12 Blend Filled with Carbon Black

  • Bencha ThongnuanchanEmail author
  • Wanida Nantayos
  • Natinee Lopattananon
  • Suwat Rattanapan
  • Anoma Thitithammawong
  • Charoen Nakason
Original paper


Thermoplastic vulcanizates (TPVs) based on blends of natural rubber (NR) grafted with poly(acetoacetoxyethyl methacrylate), NR-g-PAAEM, and polyamide12 (PA12) were prepared by the dynamic vulcanization technique. NR-g-PAAEM was first prepared and its surface free energy was evaluated by means of contact angles. Blends of NR-g-PAAEM and PA12 were then prepared at a 60/40 blend ratio (wt%) using a dynamic vulcanization technique. The results revealed that TPVs exhibited a dispersed-phase morphology. However, the TPVs filled with carbon black (CB) showed much smaller dispersed rubber particles when compared to the unfilled TPV. TEM analysis also revealed that the CB appeared to be mainly located within the NR-g-PAAEM phase. The presence of CB generally raised the melt viscosity and increased shear during melt-mixing, resulting in finer dispersion of the rubber particles. Additionally, a significant enhancement in the tensile properties of the TPV was also achieved by the incorporation of CB. The optimum tensile properties were attained by the addition 30 phr of CB. The results also showed that the incorporation of CB into the NR-g-PAAEM/PA12 TPVs improved their stress relaxation properties. Moreover, the effects of reprocessing on the mechanical properties of the TPV filled with CB were also investigated. Although the TPV filled with CB exhibited reprocessing capability, reprocessing at high temperature and shear forces was found to negatively affect its tensile properties, especially after the third reprocessing cycle.


Thermoplastic vulcanizate Natural rubber Polyamide12 Acetoacetoxyethyl methacrylate 



This work was supported by the Research Fund of Prince of Songkla University, SIT590171M. The authors would like to thank the Research and Development Office (RDO) of Prince of Songkla University for assistance with editing the English language content of this article.


  1. 1.
    Huneau B (2011) Rubber Chem Technol 84:425CrossRefGoogle Scholar
  2. 2.
    Ibrahim A, Dahlan M (1998) Prog Polym Sci 23:665CrossRefGoogle Scholar
  3. 3.
    Drobny JG (2007) Handbook of thermoplastic elastomers. William Andrew Inc., New YorkGoogle Scholar
  4. 4.
    Naskar K, Noordermeer JWM (2005) Prog Rubber Plast Recyc Technol 21:1CrossRefGoogle Scholar
  5. 5.
    Mondal M, Gohs U, Wagenknecht U, Heinrich G (2013) Radiat Phys Chem 88:74CrossRefGoogle Scholar
  6. 6.
    Mondal M, Gohs U, Wagenknecht U, Heinrich G (2013) Mater Chem Phys 143:360CrossRefGoogle Scholar
  7. 7.
    Chanda M (2007) Plastics technology handbook, 4th edn. CRC Press, Boca RatonGoogle Scholar
  8. 8.
    Baker A-M, Mead JL (2006) In: Harper AC (ed) Handbook of plastics technologies, the complete guide to properties and performance. McGraw-Hill Companies Inc, New York, pp 2.1–2.58Google Scholar
  9. 9.
    Chatterjee T, Wiessner S, Naskar K, Heinrich G (2014) Express Polym Lett 8:220CrossRefGoogle Scholar
  10. 10.
    Chatterjee T, Basu D, Das A, Wiessner S, Naskar K, Heinrich G (2016) Eur Polym J 78:235CrossRefGoogle Scholar
  11. 11.
    Sammler RL, Dion RP, Carriere CJ, Cohen A (1922) Rheol Acta 31:444Google Scholar
  12. 12.
    Wu S (1978) In: Paul DR, Newman S (eds) Polymer blends, vol 1. Academic Press Inc, New York, pp 244–288Google Scholar
  13. 13.
    Muthuraj R, Misra M, Mohanty AK (2015) In: Misra M, Pandey JK, Mohanty AK (eds) Biocomposites: design and mechanical performance. Woodhead Publishing, Cambridge, pp 93–131CrossRefGoogle Scholar
  14. 14.
    Axtel FH, Phinyocheep P, Kriengchieoncharm P (1996) J Sci Soc Thailand 22:201CrossRefGoogle Scholar
  15. 15.
    Carone E Jr, Kopcak U, Gonąlves MC, Nunes SP (2000) Polymer 41:5929CrossRefGoogle Scholar
  16. 16.
    Narathichat M, Kummerlöwe C, Vennemann N, Nakason C (2011) J Appl Polym Sci 12:805CrossRefGoogle Scholar
  17. 17.
    Thongnuanchan B, Rattanapanb S, Persaleaa K, Thitithammawonga A, Pichaiyutc S, Nakason C (2017) Polym Adv Technol 28:1148CrossRefGoogle Scholar
  18. 18.
    Vennemann N (2012) In: El-Sonbati A (ed) Thermoplastic elastomers. Rijeka, InTech, pp 347–370Google Scholar
  19. 19.
    Vennemann N, Bökamp K, Broeker D (2006) Macromol Symp 245:641CrossRefGoogle Scholar
  20. 20.
    Thongnuanchan B, Rattanawadee N, Nakason C (2017) Iran Polym J 26:41CrossRefGoogle Scholar
  21. 21.
    Kangwansupamonkon W, Gilbert RG, Kiatkamjornwong S (2005) Macromol Chem Phys 206:2450CrossRefGoogle Scholar
  22. 22.
    Arayapranee W, Prasassarakich P, Rempel GL (2002) J Appl Polym Sci 83:2993CrossRefGoogle Scholar
  23. 23.
    Alghunaim A, Kirdponpattara S, Newby BWZ (2016) Powder Technol 287:201CrossRefGoogle Scholar
  24. 24.
    Yuan Y, Lee TR (2013) In: Bracco G, Holst B (eds) Surface science techniques, springer series in surface sciences 51. Springer, Heidelberg, pp 3–29Google Scholar
  25. 25.
    Wu S (1971) J Polym Sci: C 34:19Google Scholar
  26. 26.
    Wu S (1982) Polymer Interface and Adhesion. Marcel Dekker Inc, New YorkGoogle Scholar
  27. 27.
    Wu S (1974) J Macromol Sci: C 10:1CrossRefGoogle Scholar
  28. 28.
    Coran AY, Patel RP (1980) Rubber Chem Technol 53:141CrossRefGoogle Scholar
  29. 29.
    González-Martin ML, Jańczuk B, Labajos-Broncano L, Bruque JM (1997) Langmuir 13:5991CrossRefGoogle Scholar
  30. 30.
    Wolff S, Wang M-J (1993) In: Donnet J-B (ed) Carbon black science and technology 2nd, revised and expanded. Marcel Dekker, New York, pp 289–345Google Scholar
  31. 31.
    Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Polym Bull 25:265CrossRefGoogle Scholar
  32. 32.
    Fenouillot F, Cassagnau P, Majesté J-C (2009) Polymer 50:1333CrossRefGoogle Scholar
  33. 33.
    Nakason C, Narathichat M, Kummerlöwe C, Vennemann N (2012) J Elastom Plast 45:47CrossRefGoogle Scholar
  34. 34.
    McNally T, Raymond Murphy W, Lew CY, Turner RJ, Brennan GP (2003) Polymer 44:2761CrossRefGoogle Scholar
  35. 35.
    Sandler JKW, Pegel S, Cadek M, Gojny F, van Es M, Lohmar L, Blau WJ, Schulte K, Windle AH, Shaffer MSP (2004) Polymer 45:2001CrossRefGoogle Scholar
  36. 36.
    Engler P, Carr SH (1979) Polym Eng Sci 19:779CrossRefGoogle Scholar
  37. 37.
    Grassie N, Scott G (1985) Polymer degradation & stabilization. Cambridge University Press, CambridgeGoogle Scholar
  38. 38.
    Ballard MJ, Buscall R, Waite FA (1988) Polymer 29:1287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Rubber Technology and Polymer Science, Faculty of Science and TechnologyPrince of Songkla UniversityPattaniThailand
  2. 2.Faculty of Science and TechnologyRajamangala University of Technology SrivijayaNakhon Si ThammaratThailand
  3. 3.Faculty of Science and Industrial TechnologyPrince of Songkla UniversitySurat ThaniThailand

Personalised recommendations