Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 8, pp 1781–1789 | Cite as

Development of Membranes Composed of Poly(butylene adipate-co-terephthalate) and Activated Charcoal for Use in a Controlled Release System of Pheromone

  • Paulo Romano Cruz CorreiaEmail author
  • Jamille Santos Santana
  • Ingrid Graça Ramos
  • Antônio Euzébio Goulart Sant’Ana
  • Henrique Fonseca Goulart
  • Janice Izabel Druzian
Original paper
  • 36 Downloads

Abstract

Membranes composed of poly (butylene adipate co-terephthalate), PBAT, and activated Charcoal (80:20%) were produced with a double screw extruder and their thermal, morphological, mechanical and structural properties were evaluated. The thermogravimetric analyzes of the membranes showed that there was no change in the decomposition temperatures of the polymer added with charcoal, with the first occurrence between 340–400 °C related to PBAT and the second between 465 and 612 °C related to charcoal. The micrographs of the PBAT membrane presented compact matrix without appreciable defects. For the sample of PBAT:Charcoal it was observed that the charcoal was dispersed in the matrix of the polymer, with some agglomerates and presence of cavities. It was also observed an increase of 120.24% in the barrier property evidenced by the water vapor permeability (PVA) test in relation to the PBAT membrane. This increase may be due to the presence of the wells and clusters observed in the microscopies. The PBAT:Charcoal membrane, despite having presented alteration in the mechanical properties due to the addition of the charcoal, demonstrated good properties, making the process possible. The PBAT:Charcoal membranes presented promising results indicating that these matrices can be used as packaging materials in the industry for improving safety and prolonging the shelf life of the packaged product. The application of pheromones for pest management requires a constant releaser of the active during the capture period of the insect. In addition, for efficient use, the pheromone must be protected from climatic factors. The permeation studies of rhynchophorol through the membranes presented releaser rates similar to the systems found in the literature, with an increase in the life of the pheromone, possibly generating a lower cost of baits for the farmer.

Keywords

Rhynchophorus palmarum Rhynchophorol Black palm weevil Dispensers Agroindustrial residues 

Notes

Acknowledgements

The authors thank Interacta Química Ltda. for helping in the manufacture of rhynchophorol pheromone. The authors thank CNPq by financing this research Project (403224/2013-6). P.R.C. Correia thanks Fapesb for the scholarship.

References

  1. 1.
    Navarro DMAF, Murta MM, Duarte AG, Lima ISN, Ruth R, Sant’Ana AEG (2002) Quim Nova 25(1):32–36CrossRefGoogle Scholar
  2. 2.
    Murguía-González J, Landero-Torres I, Leyva-Ovalle OR, Galindo-Tovar ME, Llarena-Hernández RC, Presa-Parra E, García-Martínez MA (2018) Neotrop Entomol 47(2):302–310CrossRefGoogle Scholar
  3. 3.
    Landero-Torres I, Presa-Parra E, Galindo-Tovar ME, Leyva-Ovalle OR, Murguía-González J, Valenzuela-González JE, García-Martínez MA (2015) Southwest Entomol 40(1):179–188CrossRefGoogle Scholar
  4. 4.
    Landero-Torres I, Galindo-Tovar ME, Leyva-Ovalle OR, Murguía-González J, Presa-Parra E, García-Martínez MA (2015) Entomología Mexicana 2:112–118Google Scholar
  5. 5.
    Moya-Murillo OM, Aldana-De La Torre RC, Bustillo-Pardey AE (2015) Rev Colomb Entomol 41:18–23Google Scholar
  6. 6.
    Fardisi M, Mason LJ (2013) J Stored Prod Res 52:93–99CrossRefGoogle Scholar
  7. 7.
    Welter S, Pickel C, Millar J, Cave F, Van Steenwyk R, Dunley J (2005) Calif Agr 59(1):16–22CrossRefGoogle Scholar
  8. 8.
    Tjandraatmadja GF, Burn LS, Jollands MC (2002) Polym Degrad Stabil 78(3):435–448CrossRefGoogle Scholar
  9. 9.
    Luckachan GE, Pillai CKS (2011) J Polym Environ 19:637–676CrossRefGoogle Scholar
  10. 10.
    Ebnesajjad S (2013) Handbook of biopolymers and biodegradable plastics; properties, processing and applications, 1st edn. William Andrew, OxfordGoogle Scholar
  11. 11.
    Fukushima K, Wu M-H, Bocchini S, Rasyida A, Bocchini S (2012) Mater Sci Eng, C 32:1331–1351CrossRefGoogle Scholar
  12. 12.
    Arletti R, Gigli L, Renzo F, Quartieri S (2016) Microporous Mesoporous Mater 228:248–255CrossRefGoogle Scholar
  13. 13.
    Schneider J, Manjure S, Narayan R (2016) J Appl Polym Sci 133:43310CrossRefGoogle Scholar
  14. 14.
    Dubinin MM (1979) Adsorption equations for active carbons with inhomogeneous microporous structures. Carbon 17:505–506CrossRefGoogle Scholar
  15. 15.
    Baccar R, Bouzid J, Feki M, Montiel A (2009) J Hazard Mater 162(2–3):1522–1529CrossRefGoogle Scholar
  16. 16.
    Auta M, Hameed BH (2011) Chem Eng J 171:502–509CrossRefGoogle Scholar
  17. 17.
    IUPAC (International Union of Pure and Applied Chemistry)Google Scholar
  18. 18.
    Dural MU, Cavas L, Papageorgiou SK, Katsaros FK (2011) Chem Eng J 168:77–85CrossRefGoogle Scholar
  19. 19.
    Muñoz-Pallares J, Corma A, Primo J, Primo-Yufera E (2001) J Agric Food Chem 49(10):4801–4807CrossRefGoogle Scholar
  20. 20.
    ASTM D882-2002. Standard test method for tensile properties of thin plastic sheeting. ASTM international: West ConshohockenGoogle Scholar
  21. 21.
    Hayakawa K, Tanaka K, Nakamura T, Endo S, Hoshino T (1997) Cereal Chem 74(5):576–580CrossRefGoogle Scholar
  22. 22.
    Park S-I, Zhao YJ (2004) Agric Food Chem 52(7):1933–1939CrossRefGoogle Scholar
  23. 23.
    ASTM E96 / E96 M-2012. Standard test methods for water vapor transmission of materials. ASTM international: West ConshohockenGoogle Scholar
  24. 24.
    Olivato JB, Marini J, Pollet E, Yamashita F, Grossmann MV, Avérous L (2015) Carbohydr Polym 118:250–256CrossRefGoogle Scholar
  25. 25.
    Ibrahim N, Rahim N, Wan Yunus W, Sharif J (2011) J Polym Res 18:891–896CrossRefGoogle Scholar
  26. 26.
    Özmihci F, Balköse D, Ülkü S (2001) J Appl Polym Sci 82:2913–2921CrossRefGoogle Scholar
  27. 27.
    Galicia-García T, Martínez-Bustos F, Jiménez-Arévalo AO, Arencón D, Gámez-Pérez J, Martínez AB (2012) J Appl Polym Sci 126:326–335CrossRefGoogle Scholar
  28. 28.
    Piyada K, Waranyou S, Thawien W (2013) Int Food Res J 20(1):439–449Google Scholar
  29. 29.
    Yassue-Cordeiro PH, Zandonai CH, Silva CF, Fernandes-Machado NRC (2015) Polímeros 25:492–502CrossRefGoogle Scholar
  30. 30.
    Chivrac F, Kadlecova Z, Pollet E, Avérous L (2006) J Polym Environ 14:393–401CrossRefGoogle Scholar
  31. 31.
    Bondioli F, Manfredini T, Oliveira APN (1998) Cerâm Ind 3(4/6):13–17Google Scholar
  32. 32.
    Malia S, Grossmanna MVE, Garcıá MA, Martino MN, Zaritzky NE (2004) Carbohydr Polym 56:129–135CrossRefGoogle Scholar
  33. 33.
    Saceda J-JF, Rintramee K, Khabuanchalad S, Prayoonpokarach S, Leon RL, Wittayakun J (2012) J Ind Eng Chem 18:420–424CrossRefGoogle Scholar
  34. 34.
    Correia PRC, Ramos IG, Viana AC, Mascarenhas AJS, Sant’ana AEG, Goulart HF, Druzian JI (2017) J Appl Polym Sci 135:45757CrossRefGoogle Scholar
  35. 35.
    Duarte AG, Lima IS (2001) Neotropical Entomol 30(2):217–221CrossRefGoogle Scholar
  36. 36.
    Alpizar D, Fallas M, Oehlschlager AC, Gonzalez LM, Chinchilla CM, Bulgarelli J (2002) Fla Entomol 85(3):426–430CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Paulo Romano Cruz Correia
    • 1
    Email author
  • Jamille Santos Santana
    • 2
  • Ingrid Graça Ramos
    • 3
  • Antônio Euzébio Goulart Sant’Ana
    • 4
  • Henrique Fonseca Goulart
    • 4
  • Janice Izabel Druzian
    • 1
  1. 1.Faculdade de Farmácia - Programa de Pós-Graduação em Biotecnologia - RENORBIOUniversidade Federal da BahiaSalvadorBrazil
  2. 2.Faculdade de Engenharia Química, Escola PolitécnicaUniversidade Federal da BahiaSalvadorBrazil
  3. 3.Instituto de Química da Universidade Federal da BahiaSalvadorBrazil
  4. 4.Centro de Ciências AgráriasUniversidade Federal de AlagoasMaceióBrazil

Personalised recommendations