Journal of Polymers and the Environment

, Volume 27, Issue 8, pp 1721–1734 | Cite as

Microcellular Foaming Behaviors of Poly (Lactic Acid)/Low-Density Polyethylene Blends Induced by Compatibilization Effect

  • Xianzeng Wang
  • Yang Li
  • Yang Jiao
  • Hongfu ZhouEmail author
  • Xiangdong WangEmail author
Original paper


A facile methodology for improving the crystallization ability, rheological properties and microcellular foaming behaviors of poly (lactic acid)/low-density polyethylene (PLA/LDPE) blends through compatibilization was proposed. Poly (ethylene octene) grafted with glycidyl methacrylate (GPOE) as reactive compatibilizer was introduced into PLA/LDPE blends and the resultant PLA/LDPE/GPOE blends were foamed by supercritical CO2. Torque curves and Fourier transformation infrared spectroscopy results confirmed that GPOE reacted with PLA successfully. The crystallization ability and rheological properties of PLA was promoted obviously by the addition of LDPE and GPOE. The size of LDPE dispersion phase in PLA/LDPE blends decreased from 4.4 ± 0.1 to 1.2 ± 0.1 µm, owing to the compatibility effect. When the content of GPOE reach 8 phr, microcellular structure appeared in the PLA/LDPE/GPOE blending foam. An interesting flower-like cellular structure was observed in PLA/LDPE/GPOE blending foams, with the foaming temperature at 85 and 90 °C. Finally, the microcellular foaming mechanism for various PLA foams was proposed and clarified using schematic diagram.


Poly (lactic acid) Low-density polyethylene Microcellular Foam Compatibilization 



This work was supported by the National Science Foundation of China (51703004 and 51673004) and Building of Innovative Team Plan (IG201703N).


  1. 1.
    Xie P, Wu G, Cao Z, Han Z, Zhang Y, An Y, Yang W (2018) Effect of mold opening process on microporous structure and properties of microcellular polylactide-polylactide nanocomposites. Polymers 554:1–11Google Scholar
  2. 2.
    Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864CrossRefGoogle Scholar
  3. 3.
    Kuang T, Ju J, Yang Z, Geng L, Peng X (2018) A facile approach towards fabrication of lightweight biodegradable poly (butylene succinate)/carbon fiber composite foams with high electrical conductivity and strength. Compos. Sci. Technol. 159:171–179CrossRefGoogle Scholar
  4. 4.
    Min Z, Yang H, Chen F, Kuang T (2018) Scale-up production of lightweight high-strength polystyrene/carbonaceous filler composite foams with high-performance electromagnetic interference shielding. Mater Lett 230:157–160CrossRefGoogle Scholar
  5. 5.
    Yeh SK, Liu YC, Chu CC, Chang KC, Wang SF (2017) Mechanical properties of microcellular and nanocellular thermoplastic polyurethane nanocomposite foams created using supercritical carbon dioxide. Ind Eng Chem Res 56:8499–8507CrossRefGoogle Scholar
  6. 6.
    Okolieocha C, Raps D, Subramaniam K, Altstadt V (2015) Microcellular to nanocellular polymer foams: progress (2004-2015) and future directions—a review. Eur Polym J 73:500–519CrossRefGoogle Scholar
  7. 7.
    Ding J, Shangguan J, Ma W, Zhong Q (2013) Foaming behavior of microcellular foam polypropylene/modified nano calcium carbonate composites. J Appl Polym Sci 128:3639–3651CrossRefGoogle Scholar
  8. 8.
    Kuang TR, Mi HY, Fu DJ, Jing X, Chen BY, Mou WJ, Peng XF (2015) Fabrication of poly(lactic acid)/graphene oxide foams with highly oriented and elongated cell structure via unidirectional foaming using supercritical carbon dioxide. Ind Eng Chem Res 54:758–768CrossRefGoogle Scholar
  9. 9.
    Ding J, Ma W, Song F, Zhong Q (2013) Effect of nano-calcium carbonate on microcellular foaming of polypropylene. J Mater Sci 48:2504–2511CrossRefGoogle Scholar
  10. 10.
    Song J, Mi J, Zhou H, Wang X, Zhang Y (2018) Chain extension of poly (butylene adipate-co-terephthalate) and its microcellular foaming behaviors. Polym Degrad Stabil 157:143–152CrossRefGoogle Scholar
  11. 11.
    Chen P, Wang W, Wang Y, Yu K, Zhou H, Wang X, Mi J (2017) Crystallization-induced microcellular foaming of poly (lactic acid) with high volume expansion ratio. Polym Degrad Stabil 144:231–240CrossRefGoogle Scholar
  12. 12.
    Shi X, Zhang G, Liu Y, Ma Z, Jing Z, Fan X (2016) Microcellular foaming of polylactide and poly (butylene adipate-co-terphathalate) blends and their CaCO3 reinforced nanocomposites using supercritical carbon dioxide. Polym Adv Technol 27:550–560CrossRefGoogle Scholar
  13. 13.
    Urbanczyk L, Calberg C, Detrembleur C, Jerome C, Alexandre M (2010) Batch foaming of SAN/clay nanocomposites with scCO2: a very tunable way of controlling the cellular morphology. Polymer 51:3520–3531CrossRefGoogle Scholar
  14. 14.
    Jo C, Fu J, Naguib HE (2005) Constitutive modeling for mechanical behavior of PMMA microcellular foams. Polymer 46:11896–11903CrossRefGoogle Scholar
  15. 15.
    Ma Z, Zhang G, Yang Q, Shi X, Shi A (2013) Fabrication of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions using supercritical carbon dioxide as a blowing agent. J Cell Plast 50:55–79CrossRefGoogle Scholar
  16. 16.
    Salerno A, Domingo C (2014) Low-temperature clean preparation of poly (lacticacid) foams by combining ethyl lactate and supercritical CO2: correlation between processing and foam pore structure. Polym Int 63:1303–1310CrossRefGoogle Scholar
  17. 17.
    Khorasani MM, Ghaffarian SR, Babaie A, Mohammadi N (2010) Foaming behavior and cellular structure of microcellular HDPE nanocomposites prepared by a high temperature process. J Cell Plast 46:173–190CrossRefGoogle Scholar
  18. 18.
    Colton JS (1989) The nucleation of microcellular foams in semi-crystalline thermoplastics. Mater Manuf Process 4:253–262CrossRefGoogle Scholar
  19. 19.
    Salerno A, Zeppetelli S, Maio ED, Iannace S, Netti PA (2011) Design of bimodal PCL and PCL-HA nanocomposite scaffolds by two step depressurization during solid-state supercritical CO2 foaming. Macromol Rapid Commun 32:1150–1156CrossRefGoogle Scholar
  20. 20.
    Salerno A, Maio ED, Iannace S, Netti PA (2011) Solid-state supercritical CO2 foaming of PCL and PCL-HA nano-composite: effect of composition, thermal history and foaming process on foam pore structure. J Supercrit Fluid 58:158–167CrossRefGoogle Scholar
  21. 21.
    Nofar M, Tabatabaei A, Sojoudiasli H, Park CB, Carreau PJ, Heuzey MC, Kamal MR (2017) Mechanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with different morphologies. Eur Polymer J 90:231–244CrossRefGoogle Scholar
  22. 22.
    Fu D, Chen F, Peng X, Kuang T (2018) Polyamide 6 modified polypropylene with remarkably enhanced mechanical performance, thermal properties, and foaming ability via pressure-induced-flow processing approach. Adv Polym Technol 37:2721–2729CrossRefGoogle Scholar
  23. 23.
    Mihaela M, Huneault MA, Favis BD (2010) Rheology and extrusion foaming of chain-branched poly(lactic acid). Polym Eng Sci 50:629–642CrossRefGoogle Scholar
  24. 24.
    Wang J, Zhu W, Zhang H, Park CB (2012) Continuous processing of low-density, microcellular poly (lactic acid) foams with controlled cell morphology and crystallinity. Chem Eng Sci 75:390–399CrossRefGoogle Scholar
  25. 25.
    Xu M, Yan H, He Q, Wan C, Liu T, Zhao L, Park CB (2017) Chain extension of polyamide 6 using multifunctional chain extenders and reactive extrusion for melt foaming. Eur Polym J 96:210–220CrossRefGoogle Scholar
  26. 26.
    Li B, Zhao G, Wang G, Zhang L, Gong J (2018) Fabrication of high-expansion microcellular PLA foams based on preisothermal cold crystallization and supercritical CO2 foaming. Polym Degrad Stabil 156:75–88CrossRefGoogle Scholar
  27. 27.
    Kuang T, Chang L, Chen F, Sheng Y, Fu D, Peng X (2016) Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105:305–313CrossRefGoogle Scholar
  28. 28.
    Kuang T, Chen F, Chang L, Zhao Y, Fu D, Gong X, Peng X (2017) Facile preparation of open-cellular porous poly (L-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications. Chem Eng J 307:1017–1025CrossRefGoogle Scholar
  29. 29.
    Sun S, Li Q, Zhao N, Jiang J, Zhang K, Hou J, Wang X, Liu G (2018) Preparation of highly interconnected porous poly(ε-caprolactone)/poly(lactic acid) scaffolds via supercritical foaming. Polym. Adv. Technol. 29:3065–3074CrossRefGoogle Scholar
  30. 30.
    Tuna B, Ozkoc G (2017) Effects of diisocyanate and polymeric epoxidized chain extenders on the properties of recycled poly (lactic acid). J Polym Environ 25:983–993CrossRefGoogle Scholar
  31. 31.
    Shi X, Qin J, Wang L, Ren L, Rong F, Li D, Wang R, Zhang G (2018) Introduction of stereocomplex crystallites of PLA for the solid and microcellular poly(lactide)/poly(butylene adipate-co-terephthalate) blends. RSC Adv 8:11850–11861CrossRefGoogle Scholar
  32. 32.
    Ma Z, Zhang G, Yang Q, Shi X, Li J, Zhang H, Qin J (2018) Tailored morphologies and properties of high-performance microcellular poly(phenylene sulfide)/poly(ether ether ketone) (PPS/PEEK) blends. J Supercrit Fluid 140:116–128CrossRefGoogle Scholar
  33. 33.
    Tiwary P, Park CB, Kontopoulou M (2017) Transition from microcellular to nanocellular PLA foams by controlling viscosity, branching and crystallization. Eur Polym J 91:283–296CrossRefGoogle Scholar
  34. 34.
    Zhao H, Cui Z, Sun X, Turng LS, Peng X (2013) Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) Blends. Ind Eng Chem Res 52:2569–2581CrossRefGoogle Scholar
  35. 35.
    Jia P, Hu J, Zhai W, Duan Y, Zhang J, Han C (2015) Cell morphology and improved heat resistance of microcellular poly(l-lactide) foam via introducing stereocomplex crystallites of PLA. Ind Eng Chem Res 54:2476–2488CrossRefGoogle Scholar
  36. 36.
    Zhou H, Zhao M, Qu Z, Mi J, Wang X, Deng Y (2018) Thermal and rheological properties of poly(lactic acid)/low-density polyethylene blends and their supercritical CO2 foaming behavior. J Polym Environ 26:3564–3573CrossRefGoogle Scholar
  37. 37.
    Pilla S, Kim SG, Auer GK, Gong S, Park CB (2010) Microcellular extrusion foaming of poly(lactide)/poly(butylene adipate-co-terephthalate) blends. Mater Sci Eng C 30:255–262CrossRefGoogle Scholar
  38. 38.
    Lu X, Tang L, Wang L, Zhao J, Li D, Wu Z, Xiao P (2016) Morphology and properties of bio-based poly (lactic acid)/high-density polyethylene blends and their glass fiber reinforced composites. Polym Test 54:90–97CrossRefGoogle Scholar
  39. 39.
    Fu Q, Men Y, Strobl G (2003) Understanding of the tensile deformation in HDPE/LDPE blends based on their crystal structure and phase morphology. Polymer 44:1927–1933CrossRefGoogle Scholar
  40. 40.
    Zhang K, Wang Y, Jiang J, Wang X, Hou J, Sun S, Li Q (2019) Fabrication of highly interconnected porous poly(ecaprolactone) scaffolds with supercritical CO2 foaming and polymer leaching. J Mater Sci 54:5112–5126CrossRefGoogle Scholar
  41. 41.
    Chiou KC, Chang FC (2000) Reactive compatibilization of polyamide-6 (PA 6)/polybutylene terephthalate (PBT) blends by a multifunctional epoxy resin. J Polym Sci B 38:23–33CrossRefGoogle Scholar
  42. 42.
    Jiang X, Huang H, Zhang Y, Zhang Y (2004) Dynamically cured polypropylene/epoxy blends. J Appl Polym Sci 92:1437–1448CrossRefGoogle Scholar
  43. 43.
    Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym Test 43:27–37CrossRefGoogle Scholar
  44. 44.
    Azizi H, Morshedian J, Barikani M, Wagner MH (2011) Correlation between molecular structure parameters and network properties of silane-grafted and moisture cross-linked polyethylenes. Adv Polym Technol 30:286–300CrossRefGoogle Scholar
  45. 45.
    Djellali S, Haddaoui N, Sadoun T, Bergeret A, Grohens Y (2013) Structural, morphological and mechanical characteristics of polyethylene, poly (lactic acid) and poly (ethylene-co-glycidyl methacrylate) blends. Iran Polym J 22:245–257CrossRefGoogle Scholar
  46. 46.
    Gu X, Huang X, Wei H, Tang X (2011) Synthesis of novel epoxy-group modified phosphazene-containing nanotube and its reinforcing effect in epoxy resin. Eur Polym J 47:903–910CrossRefGoogle Scholar
  47. 47.
    Zheng M, Luo X (2013) Phase structure and properties of toughened poly(l-lactic acid)/glycidyl methacrylate grafted poly(ethylene octane) blends sdjusted by the stereocomplex. Polym Plast Technol 52:1250–1258CrossRefGoogle Scholar
  48. 48.
    Zhang X, Ding W, Zhao N, Chen J, Park CB (2018) Effects of compressed CO2 and cotton fibers on the crystallization and foaming behaviors of polylactide. Ind Eng Chem Res 57:2094–2104CrossRefGoogle Scholar
  49. 49.
    Ojijo V, Ray SS, Sadiku R (2013) Toughening of biodegradable polylactide/poly(butylene succinateco-adipate) blends via in situ reactive compatibilization. ACS Appl Mater Int 5:4266–4276CrossRefGoogle Scholar
  50. 50.
    Ojijo V, Ray SS, Sadiku R (2012) Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and Poly[(butylene succinate)-co-adipate]. ACS Appl Mater Int 4:6690–6701CrossRefGoogle Scholar
  51. 51.
    Chen P, Yu K, Wang Y, Wang W, Zhou H, Li H, Mi J, Wang X (2018) The effect of composite nucleating agent on the crystallization behavior of branched poly (lactic acid). J Polym Environ 26:3718–3730CrossRefGoogle Scholar
  52. 52.
    Kim YF, Choi CN, Kim YD, Lee KY, Lee MS (2004) Compatibilization of immiscible poly(l-lactide) and low density polyethylene blends. Fiber Polym 5:270–274CrossRefGoogle Scholar
  53. 53.
    Barwinkel S, Bahrami R, Lobling TI, Schmalz H, Muller AH, Altstadt V (2016) Polymer foams made of immiscible polymer blends compatibilized by Janus particles-effect of compatibilization on foam morphology. Adv Eng Mater 18:814–825CrossRefGoogle Scholar
  54. 54.
    Bell JR, Chang K, Lopez-Barron CR, Macosko CW, Morse DC (2010) Annealing of cocontinuous polymer blends: effect of block copolymer molecular weight and architecture. Macromolecules 43:5024–5032CrossRefGoogle Scholar
  55. 55.
    Pu G, Luo Y, Wang A, Li B (2011) Tuning polymer blends to cocontinuous morphology by asymmetric diblock copolymers as the surfactants. Macromolecules 44:2934–2943CrossRefGoogle Scholar
  56. 56.
    Zolali AM, Favis BD (2018) Toughening of cocontinuous polylactide/polyethylene blends via an interfacially percolated intermediate phase. Macromolecules 51:3572–3581CrossRefGoogle Scholar
  57. 57.
    Hashima K, Nishitsuji S, Inoue T (2010) Structure-properties of super-tough PLA alloy with excellent heat resistance. Polymer 51:3934–3939CrossRefGoogle Scholar
  58. 58.
    Dong W, Jiang F, Zhao L, You J, Cao X, Li Y (2012) PLLA microalloys versus PLLA nanoalloys: preparation, morphologies, and properties. ACS Appl Mater Int 4:3667–3675CrossRefGoogle Scholar
  59. 59.
    Shin BY, Han DH (2013) Compatibilization of PLA/starch composite with electron beam irradiation in the presence of a reactive compatibilizer. Adv Compos Mater 22:411–423CrossRefGoogle Scholar
  60. 60.
    Wang X, Liu W, Li H, Du Z, Zhang C (2016) Role of maleic-anhydride-grafted-polypropylene in supercritical CO2 foaming of poly (lactic acid) and its effect on cellular morphology. J Cell Plast 52:37–56CrossRefGoogle Scholar
  61. 61.
    Xu Y, Loi J, Delgado P, Topolkaraev V, McEneany RJ, Macosko CW, Hillmyer MA (2015) Reactive compatibilization of polylactide/polypropylene blends. Ind Eng Chem Res 54:6108–6114CrossRefGoogle Scholar
  62. 62.
    Chen L, Rende D, Schadler LS, Ozisik R (2013) Polymer nanocomposite foams. J Mater Chem A 1:3837–3850CrossRefGoogle Scholar
  63. 63.
    Li K, Cui Z, Sun X, Turng LS, Huang H (2011) Effects of nanoclay on the morphology and physical properties of solid and microcellular injection molded polyactide/poly(butylenes adipate-co-terephthalate) (PLA/PBAT) nanocomposites and blends. J Biobased Mater Bioenergy 5:442–451CrossRefGoogle Scholar
  64. 64.
    Zhang Y, Tiwary P, Parent JS, Kontopoulou M, Park CB (2013) Crystallization and foaming of coagent-modified polypropylene: nucleation effects of cross-linked nanoparticles. Polymer 54:4814–4819CrossRefGoogle Scholar
  65. 65.
    Nofar M, Guo Y, Park CB (2013) Double crystal melting peak generation for expanded polypropylene bead foam manufacturing. Ind Eng Chem Res 52:2297–2303CrossRefGoogle Scholar
  66. 66.
    Nofar M, Zhu W, Park CB (2012) Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA. Polymer 53:3341–3353CrossRefGoogle Scholar
  67. 67.
    Corre YM, Maazouz A, Duchet J, Reignier J (2011) Batch foaming of chain extended PLA with supercritical CO2: influence of the rheological properties and the process parameters on the cellular structure. J Supercrit Fluid 58:177–188CrossRefGoogle Scholar
  68. 68.
    Colton JS, Suh NP (1987) Nucleation of microcellular foam: theory and practice. Polym Eng Sci 27:500–503CrossRefGoogle Scholar
  69. 69.
    Wang L, Zhou H, Wang X, Mi J (2016) Evaluation of nanoparticle effect on bubble nucleation in polymer foaming. J Phys Chem C 120:26841–26851CrossRefGoogle Scholar
  70. 70.
    Yang J, Huang L, Zhang Y, Chen F, Fan P, Zhong M, Yeh S (2013) A new promising nucleating agent for polymer foaming: applications of ordered mesoporous silica particles in polymethyl methacrylate supercritical carbon dioxide microcellular foaming. Ind Eng Chem Res 52:14169–14178CrossRefGoogle Scholar
  71. 71.
    Taki K, Yanagimoto T, Funami E, Okamoto M, Ohshima M (2004) Visual observation of CO2 foaming of polypropylene-clay nanocomposites. Polym Eng Sci 44:1004–1011CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials and Mechanical EngineeringBeijing Technology and Business UniversityBeijingPeople’s Republic of China
  2. 2.Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of PlasticsBeijingPeople’s Republic of China
  3. 3.Beijing Ray Applied Research CentreBeijingPeople’s Republic of China

Personalised recommendations