Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 8, pp 1746–1759 | Cite as

Accelerated Weathering and UV Protection-Ability of Poly(lactic acid) Nanocomposites Containing Zinc Oxide Treated Halloysite Nanotube

  • K. Lim
  • W. S. ChowEmail author
  • S. Y. Pung
Original paper
  • 36 Downloads

Abstract

The aim of this study is to investigate the effects of zinc oxide treated halloysite nanotube (HNT-ZnO) on the properties of poly(lactic acid) (PLA) nanocomposites. ZnO was immobilized on HNT using a solvent-free technique. PLA nanocomposites were prepared with different loading of HNT-ZnO (i.e., 3, 5 and 7 wt%) using melt compounding. The properties of the PLA/HNT-ZnO nanocomposites were investigated using tensile test, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, thermogravimetric analysis and UV–visible spectroscopy. In addition, the effects of accelerated weathering (duration 60 days) on the behaviour of PLA/HNT-ZnO nanocomposites were studied. It was found that HNT-ZnO is capable to enhance the reinforcing ability, thermal stability and UV barrier of PLA nanocomposites. The PLA/HNT-ZnO films showed less discoloration and chain scission, indicating its higher photo-stability as compared to PLA/HNT after exposed to accelerated weathering. In summary, this study provides a basis for further development of PLA/HNT-ZnO nanocomposites with desirable mechanical, thermal and UV protection properties for potential outdoor application.

Keywords

Poly(lactic acid) Zinc oxide Halloysite nanotubes Nanocomposite Accelerated weathering 

Notes

Acknowledgements

The authors would like to express their appreciation to Universiti Sains Malaysia for Bridging Fund (grant number: 304.PBAHAN.6316090).

References

  1. 1.
    Briassoulis D (2004) J Polym Environ 12:65–81CrossRefGoogle Scholar
  2. 2.
    Kaavessina M, Ali I, Elleithy RH, Al-Zahrani SM (2012) J Polym Res 19:9818–9830CrossRefGoogle Scholar
  3. 3.
    Kanda GS, Al-Qaradawi I, Luyt AS (2018) J Polym Res 25:196–205CrossRefGoogle Scholar
  4. 4.
    Tham WL, Chow WS, Poh BT, Mohd Ishak ZA (2016) J Compos Mater 50:3925–3934CrossRefGoogle Scholar
  5. 5.
    Nagarajan V, Mohanty AK, Misra M (2016) ACS Sustain Chem Eng 4:2899–2916CrossRefGoogle Scholar
  6. 6.
    Pal AK, Katiyar V (2017) J Polym Res 24:173–194CrossRefGoogle Scholar
  7. 7.
    Bratovčić A, Odobašić A, Ćatić S, Šestan I (2015) Croat J Food Sci Technol 7:86–94CrossRefGoogle Scholar
  8. 8.
    Du M, Guo B, Jia D (2010) Polym Int 59:574–582Google Scholar
  9. 9.
    Therias S, Murariu M, Dubois P (2017) Polym Degrad Stab 145:60–69CrossRefGoogle Scholar
  10. 10.
    Liu M, Zhang Y, Zhou C (2013) Appl Clay Sci 75:52–59CrossRefGoogle Scholar
  11. 11.
    Prashantha K, Lecouvet B, Sclavons M, Lacrampe MF, Krawczak P (2013) J Appl Polym Sci 128:1895–1903Google Scholar
  12. 12.
    Tham WL, Poh BT, Mohd Ishak ZA, Chow WS (2014) J Therm Anal Calorim 118:1639–1647CrossRefGoogle Scholar
  13. 13.
    Chow WS, Tham WL, Seow PC (2013) J Thermoplas Comp Mater 26:1349–1363CrossRefGoogle Scholar
  14. 14.
    Gaaz TS, Sulong AB, Kadhum AAH, Al-Amiery AA, Nassir MH, Jaaz AH (2017) Molecules 22:838–858CrossRefGoogle Scholar
  15. 15.
    Murariu M, Doumbia A, Bonnaud L, Dechief AL, Paint Y, Ferreira M, Campagne C, Devaux E, Dubois P (2011) Biomacromol 12:1762–1771CrossRefGoogle Scholar
  16. 16.
    Anžlovar A, Kržan A, Žagar E (2018) Arab J Chem 11:343–352CrossRefGoogle Scholar
  17. 17.
    Emamifar A, Mohammadizadeh M (2015) Food Technol Biotechnol 53:488–495CrossRefGoogle Scholar
  18. 18.
    Chu Z, Zhao T, Li L, Fan J, Qin Y (2017) Materials 10:659–672CrossRefGoogle Scholar
  19. 19.
    Gorrasi G, Pantani R, Murariu M, Dubois P (2014) Macromol Mater Eng 299:104–115CrossRefGoogle Scholar
  20. 20.
    Kim YH, Kwon SH, Choi HJ, Choi K, Kao N, Bhattacharya SN, Gupta RK (2016) J Macromol Sci Part B 55:680–692CrossRefGoogle Scholar
  21. 21.
    Zheng HJ, Zhao ZW, Liu YL, Zhao XF, Xi KH (2012) Adv Mater Res 476:1901–1904CrossRefGoogle Scholar
  22. 22.
    Coltro L, Borghetti J (2007) Polimeros 17:56–61CrossRefGoogle Scholar
  23. 23.
    Feldman D (2002) Polymer weathering: photo-oxidation. J Polym Environ 10(4):163–173CrossRefGoogle Scholar
  24. 24.
    Peng H, Liu X, Tang W, Ma R (2017) Sci Rep 7:2250–2260CrossRefGoogle Scholar
  25. 25.
    Pathare PB, Opara UL, Al-Said FAJ (2013) Food Bioprocess Tech 6:36–60CrossRefGoogle Scholar
  26. 26.
    Phua YJ, Lau NS, Sudesh K, Chow WS, Ishak ZM (2015) J Compos Mater 49:891–902CrossRefGoogle Scholar
  27. 27.
    Shu Z, Zhang Y, Yang Q, Yang H (2017) Nanoscale Res Lett 12:135–150CrossRefGoogle Scholar
  28. 28.
    Wahab R, Ansari SG, Kim YS, Dhage MS, Seo HK, Song M, Shin HS (2009) Met Mater Int 15:453–565CrossRefGoogle Scholar
  29. 29.
    Xie Y, Qian D, Wu D, Ma X (2011) J Chem Eng 168(2):959–963CrossRefGoogle Scholar
  30. 30.
    Lim KM, Chow WS, Pung SY (2019) Int J Min Met Mater.  https://doi.org/10.1007/s12613-019-1781-1 Google Scholar
  31. 31.
    Marra A, Rollo G, Cimmino S, Silvestre C (2017) Coatings 7:29–40CrossRefGoogle Scholar
  32. 32.
    De Silva RT, Pasbakhsh P, Lee SM, Kit AY (2015) Appl Clay Sci 111:10–20CrossRefGoogle Scholar
  33. 33.
    Marra A, Silvestre C, Duraccio D, Cimmino S (2016) Int J Biol Macromol 88:254–262CrossRefGoogle Scholar
  34. 34.
    Li W, Li L, Cao Y, Lan T, Chen H, Qin Y (2017) Nanomaterials 7:207–216CrossRefGoogle Scholar
  35. 35.
    Díez-Pascual AM, Díez-Vicente AL (2014) Int J Mol Sci 15:10950–10973CrossRefGoogle Scholar
  36. 36.
    Mizielińska M, Kowalska U, Jarosz M, Sumińska P, Landercy N, Duquesne E (2018) Int J Environ Res Public Health 15:794–809CrossRefGoogle Scholar
  37. 37.
    Dorgan JR, Lehermeier H, Mang M (2000) J Polym Environ 8:1–9CrossRefGoogle Scholar
  38. 38.
    Restrepo I, Benito N, Medinam C, Mangalaraja RV, Flores P, Rodriguez-Llamazares S (2017) Mater Res Express 4:105019–105037CrossRefGoogle Scholar
  39. 39.
    Murariu M, Dechief AL, Peeterbroeck S, Bonnaud L, Dubois P (2012) J Polym Environ 20:932–943CrossRefGoogle Scholar
  40. 40.
    Vasile C, Râpa M, Stefan M, Stan M, Macavei S, Darie-Nita RN, Barbu-Tudoran L, Vodnar DC, Popa EE, Stefan R, Borodi G (2017) Express Polym Lett 11:531–544CrossRefGoogle Scholar
  41. 41.
    Dong Y, Marshall J, Haroosh HJ, Mohammadzadehmoghadam S, Liu D, Qi X, Lau KT (2015) Composites Part A 76:28–36CrossRefGoogle Scholar
  42. 42.
    Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Prog Polym Sci 38:1232–1261CrossRefGoogle Scholar
  43. 43.
    Hong RY, Li JH, Chen LL, Liu DQ, Li HZ, Zheng Y, Ding J (2009) Powder Technol 189:426–432CrossRefGoogle Scholar
  44. 44.
    Anandan M, Dinesh S, Krishnakumar N, Balamurugan K (2017) J Mater Sci 28:2574–2585Google Scholar
  45. 45.
    Abhilash V, Rajender N, Suresh K (2016) Spectrosc Polym Nanocompos 14:410–451CrossRefGoogle Scholar
  46. 46.
    Pedrazzoli D, Pegoretti A, Thomann R, Kristof J, Karger-Kocsis J (2015) Polym Compos 36:869–883CrossRefGoogle Scholar
  47. 47.
    Castro-Aguirre E, Auras R, Selke S, Rubino M, Marsh T (2018) Polymers 10:202–223CrossRefGoogle Scholar
  48. 48.
    Yeniova Erpek CE, Ozkoc G, Yilmazer U (2016) Polym Compos 37:3134–3148CrossRefGoogle Scholar
  49. 49.
    Guo J, Qiao J, Zhang X (2016) J Appl Polym Sci 133:1–9Google Scholar
  50. 50.
    Abbasian M, Aali NK, Shoja SE (2013) J Macromol Sci Part A 50:966–975CrossRefGoogle Scholar
  51. 51.
    Saadattalab V, Shakeri A, Gholami H (2016) Prog Nat Sci: Mater Int 26:517–522CrossRefGoogle Scholar
  52. 52.
    Cele HM, Ojijo V, Chen H, Kumar S, Land K, Joubert T, De Villiers MFR, Ray SS (2014) Polym Test 36:24–31CrossRefGoogle Scholar
  53. 53.
    Zhang B, Han J (2016) Fibers Polym 17:1849–1857CrossRefGoogle Scholar
  54. 54.
    Therias S, Larché JF, Bussière PO, Gardette JL, Murariu M, Dubois P (2012) Biomacromolecules 13:3283–3291CrossRefGoogle Scholar
  55. 55.
    Chandramouleeswaran S, Mhaske ST, Kathe AA, Varadarajan PV, Prasad V, Vigneshwaran N (2007) Nanotechnology 18:385702–385712CrossRefGoogle Scholar
  56. 56.
    Chandar JV, Shanmugan S, Mutharasu D, Aziz AA (2016) J Optoelectron Biomed Mater 8:123–129Google Scholar
  57. 57.
    Morreale M, Dintcheva NT, La Mantia FP (2013) Express Polym Lett 7:703–715CrossRefGoogle Scholar
  58. 58.
    Scarfato P, Acierno D, Russo P (2015) Polym Compos 36:1169–1175CrossRefGoogle Scholar
  59. 59.
    Dintcheva NT, Al-Malaika S, La Mantia FP (2009) Polym Degrad Stab 94:1571–1588CrossRefGoogle Scholar
  60. 60.
    Devi RR, Maji TK (2012) Ind Eng Chem Res 51:3870–3880CrossRefGoogle Scholar
  61. 61.
    Pakravan HR, Yari H (2018) Polym Adv Technol 29:970–981CrossRefGoogle Scholar
  62. 62.
    Silvestre C, Cimmino S, Pezzuto M, Marra A, Ambrogi V, Dexpert-Ghys J, Verelst M, Augier S, Romano I, Duraccio D (2013) Polym J 45:938–945CrossRefGoogle Scholar
  63. 63.
    Butylina S, Martikka O, Kärki T (2015) Polym Degrad Stab 120:10–16CrossRefGoogle Scholar
  64. 64.
    Zhao H, Li RK (2006) Polymer 47:3207–3217CrossRefGoogle Scholar
  65. 65.
    ASTM E (2005) E313-05 Standard practice for calculating yellowness and whiteness indices from instrumentally measured color coordinates. Paint-tests for chemical, physical, and optical properties; appearanceGoogle Scholar
  66. 66.
    Rao F, Chen Y, Li N, Zhao X, Bao Y, Wu Z, Ren D, Xu J, Cai H (2017) BioResources 12:6789–6811CrossRefGoogle Scholar
  67. 67.
    Qin L, Yu WJ (2009) Adv Mater Res 79:1395–1398CrossRefGoogle Scholar
  68. 68.
    Balaguer MP, Aliaga C, Fito C, Hortal M (2016) Waste Manag 48:143–155CrossRefGoogle Scholar
  69. 69.
    El-Feky OM, Hassan EA, Fadel SM, Hassan ML (2014) J Cult Herit 15:165–172CrossRefGoogle Scholar
  70. 70.
    Akash RN, Guttal SS (2015) J Prosthodont 24:569–575CrossRefGoogle Scholar
  71. 71.
    Wallenhorst L, Gurău L, Gellerich A, Militz H, Ohms G, Viöl W (2018) Appl Surf Sci 434:1183–1192CrossRefGoogle Scholar
  72. 72.
    Ammala A, Hill AJ, Meakin P, Pas SJ, Turney TW (2002) J Nanopart Res 4:167–174CrossRefGoogle Scholar
  73. 73.
    Rajgopalan N, Khanna AS (2013) Int J Sci Res 3:1–14Google Scholar
  74. 74.
    Anžlovar A, Crnjak Orel Z, Žigon M (2008) Polimery 29:84–87Google Scholar
  75. 75.
    Annamalai PK, Martin DJ (2014) J Mater Sci Technol 30:593–602CrossRefGoogle Scholar
  76. 76.
    Bocchini S, Fukushima K, Blasio AD, Fina A, Frache A, Geobaldo F (2010) Biomacromolecules 11:2919–2926CrossRefGoogle Scholar
  77. 77.
    Rasouli D, Dintcheva NT, Faezipour M, La Mantia FP, Farahani MRM, Tajvidi M (2016) Polym Degrad Stab 133:85–91CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials and Mineral Resources Engineering, Engineering CampusUniversiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations