Journal of Polymers and the Environment

, Volume 27, Issue 8, pp 1666–1676 | Cite as

Pro-Degradant Effect of Talc Nanoparticles on Polypropylene Films

  • Paula Belen Linares
  • Luciana Andrea Castillo
  • Silvia Elena BarbosaEmail author
Original paper


Pro-degradant effect of talc nanoparticles on degradation process of polypropylene (PP) films was studied. For this purpose, two talc minerals having different intrinsic characteristics and iron content were used. Films with 0, 1 and 5% w/w of talc were exposed to three different weathering scenarios: indoor, outdoor and accelerated aging. The extent of degradation in films was evaluated by analyzing chemical and surface structure as well as optical, thermal and mechanical properties. The presence of talc induced a greater degradation in nanocomposite films and this phenomenon was increased with nanoparticle concentration. Samples having talc with higher iron content were more affected by weathering conditions since iron impurities acted as promoters of the degradation process. Clearly, iron impure talc is a good environmentally friendly alternative as a pro-degradant additive for PP degradation as its low cost (less than PP) and sustainability since does not contain heavy metals.


Polypropylene Talc Degradation Films Iron impurity 



Authors want to express their gratitude to the National Research Council (CONICET), the National Agency for Scientific and Technological Promotion of Argentina (ANPCyT), and the National University of the South (UNS).


  1. 1.
    Ammala A, Bateman S, Dean K et al (2011) An overview of degradable and biodegradable polyolefins. Elsevier Ltd, AmsterdamCrossRefGoogle Scholar
  2. 2.
    Ferrage E, Martin F, Boudet A et al (2002) Talc as nucleating agent of polypropylene: morphology induced by lamellar particles addition and interface mineral-matrix modelization. J Mater Sci 37:1561–1573. CrossRefGoogle Scholar
  3. 3.
    Morreale M, Tzankova Dintcheva N, La Mantia FP (2011) The role of filler type in the photo-oxidation behaviour of micro- and nano-filled polypropylene. Polym Int 60:1107–1116. CrossRefGoogle Scholar
  4. 4.
    Kumanayaka TO, Parthasarathy R, Jollands M (2010) Accelerating effect of montmorillonite on oxidative degradation of polyethylene nanocomposites. Polym Degrad Stab 95:672–676. CrossRefGoogle Scholar
  5. 5.
    Bocchini S, Morlat-therias S, Gardette JL, Camino G (2008) Influence of nanodispersed hydrotalcite on polypropylene photooxidation. Eur Polym J 44:3473–3481. CrossRefGoogle Scholar
  6. 6.
    Schöne J, Kotter I, Grellmann W (2012) Properties of polypropylene talc compounds with different talc particle size and loading. J Plast Technol 8:231–251Google Scholar
  7. 7.
    Ammar O, Bouaziz Y, Haddar N, Nizar M (2017) Talc as reinforcing filler in polypropylene compounds: effect on morphology and mechanical properties. Polym Sci 3:1–7. Google Scholar
  8. 8.
    Castillo LA, Barbosa SE, Capiati NJ (2013) Influence of talc morphology on the mechanical properties of talc filled polypropylene. J Polym Res. Google Scholar
  9. 9.
    Nakatani H, Shibata H, Miyazaki K et al (2010) Studies on heterogeneous degradation of polypropylene/talc composite: effect of iron impurity on the degradation behavior. J Appl Polym Sci 115:167–173. CrossRefGoogle Scholar
  10. 10.
    Rabello MS, White JR (1996) Photodegradation of talc-filled polypropylene. Polym Compos 17:691–704. CrossRefGoogle Scholar
  11. 11.
    Leong YW, Abu Bakar MB, Mohd Ishak ZA, Ariffin A (2004) Characterization of talc/calcium carbonate filled polypropylene hybrid composites weathered in a natural environment. Polym Degrad Stab 83:411–422. CrossRefGoogle Scholar
  12. 12.
    Espinosa K, Castillo L, Barbosa S (2017) Polypropylene/Talc nanocomposites films as low-cost barrier materials for food packaging. In: Packaging Food (ed) Alexandru Mihai Grumezcu. Elsevier, Amsterdam, pp 603–636Google Scholar
  13. 13.
    Windguru (2019) Windguru - Bahia Blanca [ONLINE]. Available at: Accessed 10 May 2019
  14. 14.
    McGreer M (2001) Weathering testing guidebook. Atlas electric devices Company, ChicagoGoogle Scholar
  15. 15.
    Oleyaei SA, Zahedi Y, Ghanbarzadeh B, Moayedi AA (2016) Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. Int J Biol Macromol 89:256–264. CrossRefGoogle Scholar
  16. 16.
    Lv Y, Huang Y, Yang J et al (2015) Outdoor and accelerated laboratory weathering of polypropylene: a comparison and correlation study. Polym Degrad Stab 112:145–159. CrossRefGoogle Scholar
  17. 17.
    García-Montelongo XL, Martínez-De La Cruz A, Vázquez-Rodríguez S, Torres-Martínez LM (2014) Photo-oxidative degradation of TiO2/polypropylene films. Mater Res Bull 51:56–62. CrossRefGoogle Scholar
  18. 18.
    Lu M, Gao X, Liu P et al (2017) Photo- and thermo-oxidative aging of polypropylene filled with surface modified fumed nanosilica. Compos Commun 3:51–58. CrossRefGoogle Scholar
  19. 19.
    Wang K, Bahlouli N, Addiego F et al (2013) Effect of talc content on the degradation of re-extruded polypropylene/talc composites. Polym Degrad Stab 98:1275–1286. CrossRefGoogle Scholar
  20. 20.
    Urbaniak-Domagala W (2012) The Use of the Spectrometric Technique FTIR-ATR to Examine the Polymers Surface. In: Farrukh M (ed) Advanced Apects of Spectroscopy. Croatia, InTech, pp 86–104Google Scholar
  21. 21.
    Castillo LA (2010) Materiales compuestos con cargas minerales. Universidad Nacional del Sur, Relación de las interacciones matriz-carga con las propiedades finalesGoogle Scholar
  22. 22.
    Butylina S, Martikka O, Kärki T (2015) Effect of inorganic pigments on the properties of coextruded polypropylene-based composites. Polym Degrad Stab 120:10–16. CrossRefGoogle Scholar
  23. 23.
    Contat-Rodrigo L (2013) Thermal characterization of the oxo-degradation of polypropylene containing a pro-oxidant/pro-degradant additive. Polym Degrad Stab 98:2117–2124. CrossRefGoogle Scholar
  24. 24.
    Rabello MS, White JR (1997) Crystallization and melting behaviour of photodegraded polypropylene-II. Re-crystallization of degraded molecules. Polymer (Guildf) 38:6389–6399. CrossRefGoogle Scholar
  25. 25.
    Samper MD, Fages E, Fenollar O et al (2013) The potential of flavonoids as natural antioxidants and UV light stabilizers for polypropylene. J Appl Polym Sci 129:1707–1716. CrossRefGoogle Scholar
  26. 26.
    Rabello MS (1996) The properties and crystallization behaviour of photo-degraded polypropylene. Newcastle University, TyneGoogle Scholar
  27. 27.
    Rabello MS, White JR (1997) Crystallization and melting behaviour of photodegradded polypropylene-I. Chemi-crystall Polym 38:6379–6387Google Scholar
  28. 28.
    Helfand E, Tagami Y (1972) Theory of the interface between immiscible polymers II. J Chem Phys 56:3592–3601. CrossRefGoogle Scholar
  29. 29.
    Al-shabanat M (2011) Study of the effect of weathering in natural environment on polypropylene and its composites: morphological and mechanical properties. Int J Chem 3:129–141. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Paula Belen Linares
    • 1
    • 2
  • Luciana Andrea Castillo
    • 1
    • 2
  • Silvia Elena Barbosa
    • 1
    • 2
    Email author
  1. 1.Planta Piloto de Ingeniería Química (UNS-CONICET)Bahía BlancaArgentina
  2. 2.Universidad Nacional Del SurBahía BlancaArgentina

Personalised recommendations