High Removal Capacity of Arsenic from Drinking Water Using Modified Magnetic Polyurethane Foam Nanocomposites

  • Sahebeh Tamaddoni Moghaddam
  • Mohammad Reza Naimi-Jamal
  • Andrew Rohlwing
  • Faten B. Hussein
  • Nidal Abu-ZahraEmail author
Original paper


In this study, a novel polyurethane foam (PU) nanocomposite adsorbent based on silane-modified magnetic iron-oxide nanoparticles (Fe3O4@APTES) is synthesized via a low cost and simple in situ polymerization method for the removal of arsenic ions from aqueous solutions. The chemical structure and surface morphology of the prepared nanoparticles and adsorbent were characterized using Fourier transform infrared spectroscopy, attenuated total reflection, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Inductively coupled plasma mass spectrometry was used to measure the arsenic concentration of the treated solutions. Sorption isotherms models were applied to determine the adsorption mechanism and modeling parameters. The removal capacity of the modified PU foam was at its highest during a contact time of four hours which resulted in a removal capacity of 95%. Kinetic studies were conducted to determine the adsorption capacity and the uptake rate of arsenic. A Pseudo-order model was found to be the best fit model for adsorption. The prepared adsorbent can be separated from the solution by using an external magnet field.


Polyurethane foam nanocomposites Arsenic Magnetic iron oxide Kinetics Adsorption isotherms 



The authors would like to thank Dr. Steven Hardcastle at UWM’s Advanced Analysis Facility and Dr. Ana Benko at UWM’s Shimadzu Lab Facility for their support and insights during the characterization and performance analysis of the foam samples.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Kumar M, Puri A (2012) Indian J Occup Environ Med 16:40–44CrossRefGoogle Scholar
  2. 2.
    Zhou S, Wang D, Sun H, Chen J, Wu S, Na P (2014) Water Air Soil Pollut 225:1945CrossRefGoogle Scholar
  3. 3.
    Lièvremont D, Bertin PN, Lett MC (2009) Biochimie 91:1229–1237CrossRefGoogle Scholar
  4. 4.
    Malwal D, Gopinath P (2017) Colloid Interface Sci Commun 19:14–19CrossRefGoogle Scholar
  5. 5.
    Zhu J, Wei S, Chen M, Gu H, Rapole SB, Pallavkar S, Ho TC, Hopper J, Guo Z (2013) Adv Powder Technol 24:459–467CrossRefGoogle Scholar
  6. 6.
    Venkateswarlu S, Kumar BN, Prathima B, SubbaRao Y, Jyothi NVV (2014) Arab J Chem. Google Scholar
  7. 7.
    Wang J, Xu W, Chen L, Huang X, Liu J (2014) Chem Eng J 251:25–34CrossRefGoogle Scholar
  8. 8.
    Musico YLF, Santos CM, Dalida MLP, Rodrigues DF (2013) J Mater Chem A 1:3789–3796CrossRefGoogle Scholar
  9. 9.
    Yu X, Tong S, Ge M, Zuo J, Cao C, Song W (2013) J Mater Chem A 1:959–965CrossRefGoogle Scholar
  10. 10.
    Sharma M, Kalita P, Garg A, Senapati K (2018) Ecol Environ Sci 8(3):207–210Google Scholar
  11. 11.
    Cao C, Xiao L, Chen C, Shi X, Cao Q, Gao L (2014) Powder Technol 260:90–97CrossRefGoogle Scholar
  12. 12.
    Hussein FB, Abu-Zahra NH (2016) Water Sci Technol 17:889–896Google Scholar
  13. 13.
    Hussein FB, Abu-Zahra NH (2016) J Water Process Eng 13:1–5CrossRefGoogle Scholar
  14. 14.
    Hussein FB, Abu-Zahra NHJ (2017) JMMCE 5:298–310CrossRefGoogle Scholar
  15. 15.
    Moghaddam ST, Naimi-Jamal MR (2018) J Thermoplast Compos Mater. Google Scholar
  16. 16.
    Abu-Zahra N, Gunashekar S (2014) J Res Updates Polym Sci 3:16–25CrossRefGoogle Scholar
  17. 17.
    Gunashekar S, Abu-Zahra N (2016) J Porous Mater 23:801–810CrossRefGoogle Scholar
  18. 18.
    Gunashekar S, Abu-Zahra N (2014) Int J Polym Sci 2014:7CrossRefGoogle Scholar
  19. 19.
    Pandey N, Shukla SK, Singh NB (2017) Nanocomposites 3:47–66CrossRefGoogle Scholar
  20. 20.
    Zhu J, Wei S, Lee IY, Park S, Willis J, Haldolaarachchige N, Young DP, Luoe Z, Guo Z (2012) RSC adv 2:1136–1143CrossRefGoogle Scholar
  21. 21.
    Yang K, Peng H, Wen Y, Li N (2010) Appl Surf Sci 256:3093–3097CrossRefGoogle Scholar
  22. 22.
    Moghaddam ST, Naimi-Jamal MR (2017) 21st International Electronic Conference on Synthetic Organic Chemistry SciforumGoogle Scholar
  23. 23.
    Zhou L, Li G, An T, Li Y (2010) Res Chem Intermed 36:277–288CrossRefGoogle Scholar
  24. 24.
    Ramesh A, Hasegawa H, Maki T, Ueda K (2007) Sep Purif Technol 56:90–100CrossRefGoogle Scholar
  25. 25.
    Gong J, Liu T, Wang X, Hu X, Zhang L (2011) Environ Sci Technol 45:6181–6187CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sahebeh Tamaddoni Moghaddam
    • 2
  • Mohammad Reza Naimi-Jamal
    • 2
  • Andrew Rohlwing
    • 1
  • Faten B. Hussein
    • 3
  • Nidal Abu-Zahra
    • 1
    Email author
  1. 1.Department of Materials Science & Engineering, College of Engineering & Applied ScienceUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Department of Chemistry, Research Laboratory of Green Organic Synthesis & PolymersIran University of Science and TechnologyNarmakIran
  3. 3.Civil Construction & Environmental Engineering DepartmentMarquette UniversityMilwaukeeUSA

Personalised recommendations