Advertisement

Study on Nanocellulose Properties Processed Using Different Methods and Their Aerogels

  • Kobra Rahbar ShamskarEmail author
  • Hannaneh Heidari
  • Alimorad Rashidi
Original paper
  • 36 Downloads

Abstract

In this paper the effects of different mechanical methods including homogenization, ultrasonication and grinding on the properties of the nanocellulose materials and their aerogels, were investigated. The cellulose nanocrystal products, (CNC-H) and (CNC-U), were prepared by homogenization and ultrasonication of the acid hydrolyzed pulps, respectively. The aerogel products were produced by solvent exchanging of nanocellulose hydrogels with tertiary butyl alcohol and followed by freeze drying. The nanocellulose materials were studied using transmission electron microscopy, field emission scanning electron microscopy (FE-SEM), Fourier transformed infrared spectroscopy (TEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA). Size distribution and surface charges of the nanocellulose suspensions were measured by zetasizer. Also, the morphology, the porosity properties and surface area of the CNCs and CNF aerogels were investigated via FE-SEM and nitrogen adsorption–desorption isotherms. The results showed that CNC-H has higher surface charge, suspension stability (− 41.8 mV), crystallinity index (74.7%) and better size dispersion than CNC-U and CNF with an average particle size of 122 nm. CNC-H microstructures demonstrated homogeneous network structure with smaller nanometer dimensions (15–30 nm width and 60–400 nm length). However, the CNC-H showed lower thermal stability compared to CNC-U and CNF. Larger average pore size (16.32 nm), pore volume (0.42 cc/g) and high specific surface area (> 100 m2 g−1) in CNC-H aerogel were obtained.

Graphical Abstract

Suspensions of nanocellulose (NC) were prepared by different mechanical methods: Homogenizing, Ultrasonic and grinding. The NC products were investigated and their differences in morphology and other characteristics were studied. The aerogels were prepared from the nanocellulose hydrogels. The nitrogen physisorption was used to study the pore characteristics of the aerogels.

Keywords

Microcrystalline cellulose Cellulose nanofibrils Aerogels Ultrasonic process Homogenizing Grinding 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support provided by Iran Nanotechnology Initiative Council.

References

  1. 1.
    Capadona JR, Shanmuganathan K, Trittschuh S, Seidel S, Rowan SJ, Weder C (2009) Biomacromolecules 10:712CrossRefGoogle Scholar
  2. 2.
    Pandey JK, Ahn SH, Lee CS, Mohanty AK, Misra M (2010) Macromol Mater Eng 295:975CrossRefGoogle Scholar
  3. 3.
    Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Carbohydr Polym 81:83CrossRefGoogle Scholar
  4. 4.
    Nickerson RF, Habrle JA (1947) Ind Eng Chem Res 39:1507CrossRefGoogle Scholar
  5. 5.
    Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008) Express Polym Lett 2:502CrossRefGoogle Scholar
  6. 6.
    Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Appl Mater Interfaces 5:2999CrossRefGoogle Scholar
  7. 7.
    Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Biomacromolecules 9:1579CrossRefGoogle Scholar
  8. 8.
    Iwamoto S, Nakagaito AN, Yano H (2007) Appl Phys A 89:461CrossRefGoogle Scholar
  9. 9.
    Wang S, Cheng Q (2009) J Appl Polym Sci 113:1270CrossRefGoogle Scholar
  10. 10.
    Chakraborty A, Sain M, Kortschot M (2005) Holzforschung 59:102CrossRefGoogle Scholar
  11. 11.
    Abe K, Iwamoto S, Yano H (2007) Biomacromolecules 8:3276CrossRefGoogle Scholar
  12. 12.
    Fleming K, Gray DG, Matthews S (2001) Chem Eur J 7:1831CrossRefGoogle Scholar
  13. 13.
    Revol JF, Godbout L, Gray DG (1998) J Pulp Pap Sci 24:146Google Scholar
  14. 14.
    Dahlke B, Larbig H, Scherzer HD, Poltrock R (1998) J Cell Plast 34:361CrossRefGoogle Scholar
  15. 15.
    Hill S (1997) New Sci 153:36Google Scholar
  16. 16.
    Peng BL, Dhar D, Liu HL, Tam KC (2011) Can J Chem Eng 9999:1Google Scholar
  17. 17.
    Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ (2010) J Mater Sci 45:1CrossRefGoogle Scholar
  18. 18.
    Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Soft Matter 4:2492CrossRefGoogle Scholar
  19. 19.
    Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Ind Crops Prod 35:92CrossRefGoogle Scholar
  20. 20.
    Peng Y, Gardner DJ, Han Y (2012) Cellulose 19:91CrossRefGoogle Scholar
  21. 21.
    Dong H, Snyder JF, Tran DT, Leadore JL (2013) Carbohydr Polym 95:760CrossRefGoogle Scholar
  22. 22.
    Korhonen JT, Hiekkataipale P, Malm J, Karppinen M, Ikkala O, Ras RHA (2011) ACS Nano 5:1967CrossRefGoogle Scholar
  23. 23.
    Hrubesh LW, Non-Cryst J (1998) Solids 225:335Google Scholar
  24. 24.
    Pekala RW (1989) J Mater Sci 24:3221CrossRefGoogle Scholar
  25. 25.
    Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B (1998) J Non-Cryst Solids 225:74CrossRefGoogle Scholar
  26. 26.
    Yang X, Cranston ED (2014) Chem Mater 26:6016CrossRefGoogle Scholar
  27. 27.
    Heath L, Thielemans W (2010) Green Chem 12:1448CrossRefGoogle Scholar
  28. 28.
    Cervin NT, Aulin C, Larsson PT, Wagberg L (2012) Cellulose 19:401CrossRefGoogle Scholar
  29. 29.
    Chen W, Li Q, Wang Y, Yi X, Zeng J, Yu H, Lin Y, Li J (2014) Chemsuschem 7:154CrossRefGoogle Scholar
  30. 30.
    Korhouen JT, Kettunen M, Ras RH, Ikkala O, Appl ACS (2011) Mater Interfaces 3:1813CrossRefGoogle Scholar
  31. 31.
    Kettunen M, Silvennoinen R, Houbenov N, Nykänen A, Rukolainen J, Sainio J, Lindström T, Ritala M, Ros RHA, Ikkala O (2011) Adv Funct Mater 21:510CrossRefGoogle Scholar
  32. 32.
    Zu G, Shen J, Zou L, Wang F, Zhang Y, Yao X (2016) Carbon 99:203CrossRefGoogle Scholar
  33. 33.
    De France KJ, Hoare T, Cranston EO (2017) Chem Mater 29:4609CrossRefGoogle Scholar
  34. 34.
    Olsson RT, Azizi S, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Nat Nanotechnol 5:584CrossRefGoogle Scholar
  35. 35.
    Morais JPS, Rosa MF, Filho MMS, Nascimento LD, Nascimento DM, Cassales AR (2013) Carbohydr Polym 91:229CrossRefGoogle Scholar
  36. 36.
    Mandal A, Chakrabarty D (2011) Carbohydr Polym 86:1291CrossRefGoogle Scholar
  37. 37.
    Rahbar Shamskar K, Heidari H, Rashidi A (2016) Ind Crops Prod 93:203CrossRefGoogle Scholar
  38. 38.
    Kumar A, Negi YS, Choudhary V, Bhardwa NK (2014) J Mater Phys Chem 2:1Google Scholar
  39. 39.
    Carrillo F, Colom X, Sunol J, Saurina J (2004) Eur Polym J 40:2229CrossRefGoogle Scholar
  40. 40.
    Roman M, Winter WT (2004) Biomacromolecules 5:1671CrossRefGoogle Scholar
  41. 41.
    Rouquérol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay J, Sing KSW, Ünger KK (1994) Pure Appl Chem 66:1739CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kobra Rahbar Shamskar
    • 1
    Email author
  • Hannaneh Heidari
    • 2
  • Alimorad Rashidi
    • 1
  1. 1.Nanotechnology Research CenterResearch Institute of Petroleum Industry (RIPI)TehranIran
  2. 2.Department of Chemistry, Faculty of Physics and ChemistryAlzahra UniversityTehranIran

Personalised recommendations