Advertisement

Chemical Modifications of Cyclodextrin and Chitosan for Biological and Environmental Applications: Metals and Organic Pollutants Adsorption and Removal

  • Priscila Fernanda Pereira Barbosa
  • Loanda Raquel Cumba
  • Rômulo Davi Albuquerque Andrade
  • Devaney Ribeiro do CarmoEmail author
Original paper
  • 19 Downloads

Abstract

New advances in polymer science and their possible applications have increased in recent years highlighting their important and desired properties. Regarding cyclodextrin and chitosan polymers, they are used in many fields such as agriculture, pharmaceutical, food industry, medicine and in electrochemical sensors. Carefully designed studies are therefore required in order to understand the toxicology, the ways of interaction, biodegradation rate and other parameters of these compounds before using them. This review presents the finding of studies of these polymers applications mainly on drug delivery system and pollutants removal. In addition, modifications are made to enhance their properties and enable some reactions, here it is discussed the most used modification techniques and how they change chitosan and cyclodextrin structure. Although there has been an increase in the number of studies in these areas, further progress is needed to improve understanding of the interaction between the polymers and the compounds of interest, besides their mechanism.

Keywords

Chemical modification Chitosan Cyclodextrin Drug delivery Metal removal 

Notes

Acknowledgements

The authors are grateful to the Coordenação de Aperfeiçoamento de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support.

References

  1. 1.
    Cutrone G, Casas-Solvas JM, Vargas-Berenguel A (2017) Cyclodextrin-modified inorganic materials for the construction of nanocarriers. Int J Pharm 531:621CrossRefPubMedGoogle Scholar
  2. 2.
    Semeraro P, Chimienti G, Altamura E, Fini P, Rizi V, Cosma P (2018) Chlorophyll a in cyclodextrin supramolecular complexes as a natural photosensitizer for photodynamic therapy (PDT) applications. Mater Sci Eng C 85:47CrossRefGoogle Scholar
  3. 3.
    Grillo R, De Mello NFS, Fraceto LF, Brito CL, Trossini GHG, Menezes CMS, Ferreira EI, Moraes CM (2008) Physico-chemical characterization of inclusion complex between hydroxymethylnitrofurazone and hydroxypropyl-β-cyclodextrin. Química Nova 31:290CrossRefGoogle Scholar
  4. 4.
    Varan G, Varan C, Erdoğar N, Hincal AA, Bilensoy E (2017) Amphiphilic cyclodextrin nanoparticles. Int J Pharm 531:457CrossRefPubMedGoogle Scholar
  5. 5.
    Sherje AP, Bhushan R, Dravyakar DK, Jadhav M (2017) Cyclodextrin-based nanosponges: a critical review. Carbohydr Polym 173:37CrossRefPubMedGoogle Scholar
  6. 6.
    Aguiar UN, Lima SG, Rocha MS, Freitas RM, Oliveira TM, Silva RM, Moura LCB, Almeida LTG (2014) Preparation and characterization of the inclusion complex essential oil of Croton zehntneri with β-cyclodextrin. Quim Nova 37:50CrossRefGoogle Scholar
  7. 7.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development setting. Adv Drug Deliv Rev 46:3CrossRefPubMedGoogle Scholar
  8. 8.
    Moriwaki C, Costa GL, Ferracini CN, De Moraes FF, Zanin GM, Pineda AG, Matiol G (2008) Enhancement of solubility of albendazole by complexation with β-cyclodextrin. Braz J Chem Eng 25:2559016CrossRefGoogle Scholar
  9. 9.
    Olivera S, Muralidhara HB, Venkatesh K, Guna VK, Gopalakrishna K (2016) Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: a review. Carbohydr Polym 153:600CrossRefPubMedGoogle Scholar
  10. 10.
    Gyanwali G, Hodge M, White JL (2012) Cyclodextrin functionalization: simple routes to tailored solubilities and nanoscopic polymer network. J Polym Sci A Polym Chem 50:3269CrossRefGoogle Scholar
  11. 11.
    Mura P (2014) Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. J Pharm Biomed 101:238CrossRefGoogle Scholar
  12. 12.
    Radu C, Parteni O, Ochiuz L (2016) Application of cyclodextrins in medical textiles—review. J Control Release 224:146CrossRefPubMedGoogle Scholar
  13. 13.
    Trotta F, Caldera F, Dianzani C, Argenziano M, Barrera G, Cavalli R (2016) Glutathione bioresponsive cyclodextrin nanosponges. Chem Plus Chem 81:439Google Scholar
  14. 14.
    Webster A, Merrill D, Grant HD (2007) Metal complexation of chitosan and its glutaraldehyde cross-linked derivative. Carbohydr Res 342:1189CrossRefPubMedGoogle Scholar
  15. 15.
    Moura C, Muszinski P, Schimdt C, Almeida J, Pinto L (2006) Obtainment of chitin and production of chitosan from residues of shrimp and crab. Vetor 16:37Google Scholar
  16. 16.
    Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 7:1650CrossRefGoogle Scholar
  17. 17.
    Ahmed S, Ahmad M, Ikram S (2014) Chitosan: a natural antimicrobial agent—a review. J Appl Chem 3:493Google Scholar
  18. 18.
    Silva MS, Casimiro T (2012) High affinity polymers by molecular imprinting for drug delivery. Intechopen 7:145Google Scholar
  19. 19.
    Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273CrossRefPubMedGoogle Scholar
  20. 20.
    Lucena GL, Silva AG, Honório LMC, Santos VD (2013) Removal of textile dyes from aqueous solutions by modified chitosan with thioacetamide. Ambi-Agua Taubaté 8:144Google Scholar
  21. 21.
    Hai TA, Sugimoto R (2018) Surface modification of chitin and chitosan with poly(3-hexylthiophene) via oxidative polymerization. Appl Surf Sci 434:188CrossRefGoogle Scholar
  22. 22.
    Singh M, Sharma R, Banerjee UC (2002) Biotechnological applications of cyclodextrins. Biotechnol Adv 20:341CrossRefPubMedGoogle Scholar
  23. 23.
    Venturini CG, Nicolini J, Machado C, Vanderlei G (2008) Properties and recent applications of cyclodextrin. Quim Nova 31:360CrossRefGoogle Scholar
  24. 24.
    Fedi S, Tremaroli V, Scala D, Perez-Jimenez JR, Fava F, Young L, Zannoni L (2005) T-RFLP analysis of bacterial communities in cyclodextrin-amended bioreactors developed for biodegradation of polychlorinated. Res Microbiol 156:201CrossRefPubMedGoogle Scholar
  25. 25.
    Cathum S, Velicogna D, Obenauf A, Dumouchel A, Punt M, Brown CE, Ridal J (2005) Detoxification of mercury in the environment. Anal Bioanal Chem 381:1491CrossRefPubMedGoogle Scholar
  26. 26.
    Lenik A (2014) New potentiometric electrode incorporating functionalized β-cyclodextrins for diclofenac determination. Mater Sci Eng C 45:109CrossRefGoogle Scholar
  27. 27.
    Rajendiran N, Silva S (2014) Inclusion complex of sulfadimethoxine with cyclodextrins: preparation and characterization. Carbohydr Polym 101:828CrossRefPubMedGoogle Scholar
  28. 28.
    Atta NF, El-Ads EH, Ahamed YM, Galal A (2016) Determination of some neurotransmitters at cyclodextrin/ionic liquid crystal/graphene composite electrode. Electrochim Acta 199:319CrossRefGoogle Scholar
  29. 29.
    Qin Q, Bai X, Hua Z (2016) Electropolymerization of a conductive β-cyclodextrin polymer on reduced graphene oxide modified screen-printed electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. J Electroanal Chem 782:50CrossRefGoogle Scholar
  30. 30.
    Roberts GAF (1992) Chitin chemistry, 3rd edn. Macmillan, LondonCrossRefGoogle Scholar
  31. 31.
    Rinaudo M (2006) Chitin and chitosan: properties and application. Prog Polym Sci 31:603CrossRefGoogle Scholar
  32. 32.
    Fráguas RM, Rocha DA, Queiroz ER, Abreu CMPS, Raimundo V, Oliveira VJ, Nazaré E (2015) Chemical characterization and healing effect of chitosan with low molar mass and acetylation degree in skin lesions. Polímeros 25:205CrossRefGoogle Scholar
  33. 33.
    Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5CrossRefPubMedGoogle Scholar
  34. 34.
    Bulmer C, Margaritis A, Xenocostas A (2012) Encapsulation and controlled release of recombinant human erythropoietin from chitosan-carrageenan nanoparticles. Curr Drug Deliv 9:527CrossRefPubMedGoogle Scholar
  35. 35.
    Mohan D, Pittman CU (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater 137:62CrossRefGoogle Scholar
  36. 36.
    Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061CrossRefPubMedGoogle Scholar
  37. 37.
    Wang J, Zhuang S (2018) Removal of various pollutants from water and wastewater by modified chitosan adsorbent. Crit Rev Environ Sci Technol 0:1Google Scholar
  38. 38.
    Hagbani TA, Nazzal T (2017) Curcumin complexation with cyclodextrins by the autoclave process: method development and characterization of complex formation. Int J Pharm 50:173CrossRefGoogle Scholar
  39. 39.
    Jahed V, Zarrabi A, Bordbar AK, Hafezi MS (2014) NMR (1HROESY) spectroscopic and molecular modelling investigations of supramolecular complex of beta-cyclodextrin and curcumin. Food Chem 165:241CrossRefPubMedGoogle Scholar
  40. 40.
    Marcolino VA, Zanin GM, Durrant LR, Benassi T, Matioli T (2011) Interaction of curcumin and bixin with beta-cyclodextrin: complexation methods, stability, and applications in food. J Agric Food Chem 59:3348CrossRefPubMedGoogle Scholar
  41. 41.
    Mohan PK, Sreelakshmi G, Muraleedharan C, Joseph R (2012) Water soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vib Spectrosc 62:77CrossRefGoogle Scholar
  42. 42.
    Rocks N, Bekaert S, Coia I, Paulissen G, Gueders M, Evrard B, Van Heugen JC, Chiap P, Foidart JM, Noel A, Cataldo D (2012) Curcumin–cyclodextrin complexes potentiate gemcitabine effects in an orthotopic mouse model of lung cancer. Br J Cancer 107:1083CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Badilli U, Amasya G, Şen T, Tarimci N (2014) Tropical emulgel formulation containing inclusion complex of calcipotriol with cyclodextrin. J Incl Phenom Macrocycl Chem 78:249CrossRefGoogle Scholar
  44. 44.
    Corciova A, Ciobanu C, Poiata A, Nicolescu A, Drobota M, Varganici CD, Pinteala T, Fifere A, Marangoci N, Mircea C (2014) Inclusion complexes of hesperidin with hydroxypropyl-β-cyclodextrin, physico-chemical characterization and biological assessment. Dig J Nanomater Biostruct 9:1623Google Scholar
  45. 45.
    Sarode AL, Sandhu H, Shah N, Malick W, Zia H (2013) Hot melt extrusion (HME) for amorphous solid dispersions: predictive tools for processing and impact of drug–polymer interactions on supersaturation. Eur J Pharm Sci 48:371CrossRefPubMedGoogle Scholar
  46. 46.
    Malaquias LFB, Sa-Barreto LSL, Freire DO, Silva LCR, Karan K, Durig T, Lima EM, Marreto RN, Gelfuso GM, Gratieri T, Cunha-Filho M (2018) Taste masking and rheology improvement of drug complexed with beta-cyclodextrin and hydroxypropyl–cyclodextrin by hot-melt extrusion. Carbohydr Polym 185:19CrossRefPubMedGoogle Scholar
  47. 47.
    Sanbhal N, Mao Y, Sun G, Xu RF, Zhang Q, Wang L (2017) Surface modification of polypropylene mesh devices with cyclodextrin via cold plasma for hernia repair: characterization and antibacterial properties. Appl Surf Sci 439:749CrossRefGoogle Scholar
  48. 48.
    Layre AM, Gosselet NM, Renard E, Sebille B, Amiel C (2002) Comparison of the complexation of cosmetical and pharmaceutical compounds with γ-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin and water-soluble β-cyclodextrin-co-epichlorhydrin polymers. J Incl Phenom Macrocycl Chem 43:311CrossRefGoogle Scholar
  49. 49.
    Castiglione F, Crupi V, Majolino D, Mele A, Panzeri W, Rossi B, Venuti V (2013) Vibrational dynamics and hydrogen bond properties of β-CD nanosponges: an FTIR/ATR, Raman and solid-state NMR spectroscopic study. J Incl Phenom Macrocycl Chem 75:247CrossRefGoogle Scholar
  50. 50.
    Li J, Han L, Liu S, He S, Cao Y, Xie J, Jia J (2018) Removal of indoxyl sulfate by water-soluble poly-cyclodextrins in dialysis. Colloids Surf B Biointerfaces 164:406CrossRefPubMedGoogle Scholar
  51. 51.
    Gigliotti CL, Minelli R, Cavalli R, Occhipinti S, Barrera G, Pizzimenti S, Dianzani C (2016) In vitro and in vivo therapeutic evaluation of camptothecin-encapsulated beta-cyclodextrin nanosponges in prostate cancer. J Biomed Nanotechnol 12:114CrossRefPubMedGoogle Scholar
  52. 52.
    Trotta F, Dianzani C, Caldera F, Mognetti B, Cavalli R (2014) The application of nanosponges to cancer drug delivery. Expert Opin Drug Deliv 11:931CrossRefPubMedGoogle Scholar
  53. 53.
    Swaminathan S, Cavalli R, Trotta F (2016) Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:579CrossRefPubMedGoogle Scholar
  54. 54.
    Singh P, Ren X, Guo T, Wu L, Shakya S, He Y, Wang C, Maharjan A, Singh V, Zhang J (2018) Biofunctionalization of β-cyclodextrin nanosponges using cholesterol. Carbohydr Polym 190:23CrossRefPubMedGoogle Scholar
  55. 55.
    Haddad R, Holzinger M, Villalonga R, Neumann A, Roots J, Maaref A, Cosnier S (2011) Pyrene-adamantane-β-cyclodextrin: an efficient host–guest system for the biofunctionalization of SWCNT electrodes. Carbon 49:2571CrossRefGoogle Scholar
  56. 56.
    Shalar I, Droby S, Rodov V (2018) Antimicrobial coatings on polyethylene terephthalate based on curcumin/cyclodextrin complex embedded in a multilayer polyelectrolyte architecture. Colloids Surf B Biointerfaces 184:379CrossRefGoogle Scholar
  57. 57.
    Yang L, Li M, Zhang L (2018) A cell-penetrating peptide conjugated carboxymethyl-β-cyclodextrin to improve intestinal absorption of insulin. Int J Biol Macromol 111:685CrossRefPubMedGoogle Scholar
  58. 58.
    Patel BK, Dasmandal S, Mahapatra A (2017) Unraveling the binding of phenolphthalein with serum protein and releasing by β-cyclodextrin. J Mol Liq 244:230Google Scholar
  59. 59.
    Singh V, Jadhav SB, Singhal RS (2015) Interaction of polyphenol oxidase of Solanum tuberosum with β-cyclodextrin: process details and applications. Int J Biol Macromol 80:469CrossRefPubMedGoogle Scholar
  60. 60.
    Zhang M, Wang J, Jin Z (2018) Supramolecular hydrogel formation between chitosan and hydroxypropyl β-cyclodextrin via Diels-Alder reaction and its drug delivery. Int J Biol Macromol 114:381CrossRefPubMedGoogle Scholar
  61. 61.
    Jiang Y, Liu B, Xu J, Pan K, Hou H, Hu J, Yang J (2017) Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: adsorption performance and mechanism. Carbohydr Polym 182:106CrossRefPubMedGoogle Scholar
  62. 62.
    Wang Y, Qin F, Lu M, Gao L, Yao X (2017) The screening and evaluating of chitosan/β-cyclodextrin nanoparticles for effective delivery mitoxantrone hydrochloride. Polym Sci Ser A 59:376CrossRefGoogle Scholar
  63. 63.
    Li L, Fan L, Sun M, Qiu H, Li X, Duan H, Luo C (2013) Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin–chitosan. Colloids Surf B Biointerfaces 107:76CrossRefPubMedGoogle Scholar
  64. 64.
    Fan L, Luo C, Sun M, Qiu H, Li X (2013) Synthesis of magnetic beta-cyclodextrin-chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids Surf B Biointerfaces 103:601CrossRefPubMedGoogle Scholar
  65. 65.
    Ahmad AL, Sumathi S, Hameed BH (2005) Residual oil and suspended solid removal using natural adsorbents chitosan, bentonite and activated carbon: a comparative study. Chem Eng J 108:179–185CrossRefGoogle Scholar
  66. 66.
    Zhao FP, Repo E, Yin DL, Meng Y, Jafari S, Sillanpaa M (2015) EDTA-cross-linked beta-cyclodextrin: an environmentally friendly bifunctional adsorbent for simultaneous adsorption of metals and cationic dyes. Environ Sci Technol 49:10570CrossRefPubMedGoogle Scholar
  67. 67.
    Liu J, Pu H, Liu S, Kan J, Jin C (2017) Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: a review. Carbohydr Polym 15:999CrossRefGoogle Scholar
  68. 68.
    Santos JE, Soares JP, Dockal ER, Campana Filho SP, Cavalheiro ETG (2003) Commercial chitosan characterization from different sources. Polímeros 13:242CrossRefGoogle Scholar
  69. 69.
    Gonsalves AA, Araújo CRM, Soares N, Goulart MOF, De Abreu FC (2011) Different strategies for crosslinking of chitosan. Quim Nova 34:1215CrossRefGoogle Scholar
  70. 70.
    Jothimani B, Sureshkumar S, Venkatachalapathy B (2017) Hydrophobic structural modification of chitosan and its impact on nanoparticle synthesis—a physicochemical study. Carbohydr Polym 173:114CrossRefGoogle Scholar
  71. 71.
    Wang M, Zhao T, Liu Y, Wang Q, Xing S, Li L, Wang L, Liu L, Gao D (2017) Ursolic acid liposomes with chitosan modification: promising antitumor drug delivery and efficacy. Mater Sci Eng C 71:1231CrossRefGoogle Scholar
  72. 72.
    Patel GB, Singh NL, Singh F (2017) Modification of chitosan-based biodegradable polymer by irradiation with MeV ions for electrolyte applications. Mater Sci Eng B 225:150CrossRefGoogle Scholar
  73. 73.
    Shankar S, Rhim JW (2018) Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocolloid 82:116CrossRefGoogle Scholar
  74. 74.
    Zhang Y, Wang X, Xu C, Yan W, Tian Q, Sun Z, Yao H, Gao J (2017) Fabrication of chitosan gel droplets via crosslinking of inverse pickering emulsifications. Carbohydr Polym 186:1CrossRefPubMedGoogle Scholar
  75. 75.
    Zhai L, Bai Z, Zhu Y, Wang B, Luo W (2018) Fabrication of chitosan microspheres for efficient adsorption of methyl orange. Chin J Chem Eng 26:657CrossRefGoogle Scholar
  76. 76.
    Grillo R, Clemente Z, Oliveira JL, Campos EVR, Chalupe VC, Jonsson CM, Lima R, Sanches G, Nishisaka C, Rosa AR, Oehlke K, Greiner R, Fraceto LF (2015) Chitosan nanoparticles loaded the herbicide paraquat: the influence of the aquatic humic substances on the colloidal stability and toxicity. J Hazard Mater 286:562CrossRefPubMedGoogle Scholar
  77. 77.
    Sabaa MW, Elzanaty AM, Abdel-Gaward OF, Arafa EG (2018) Synthesis, characterization and antimicrobial activity of Schiff bases modified chitosan-graft-poly(acrylonitrile). Int J Biol Macromol 109:1280CrossRefPubMedGoogle Scholar
  78. 78.
    Fan Z, Qin Y, Liu S, Xing R, Yu H, Chen X, Li K, Li P (2018) Synthesis, characterization, and antifungal evaluation of diethoxyphosphoryl polyaminoethyl chitosan derivatives. Carbohydr Polym 90:1CrossRefGoogle Scholar
  79. 79.
    Moussout H, Ahlafi H, Aazza M, Akil CE (2018) Performances of local chitosan and its nanocomposite 5% Bentonite/Chitosan in the removal of chromium ions (Cr(VI)) from wastewater. Int J Biol Macromol 108:1063CrossRefPubMedGoogle Scholar
  80. 80.
    Cazón P, Velázquez G, Ramirez JA, Vázquez M (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocolloid 68:136CrossRefGoogle Scholar
  81. 81.
    Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1CrossRefPubMedGoogle Scholar
  82. 82.
    Salústio PJ, Pontes P, Conduto C, Sanches I, Carvalho C, Arrais J, Marques HMC (2011) Advanced technologies for oral controlled release: cyclodextrins for oral controlled release. AAPS Pharm Sci Tech 12:1276CrossRefGoogle Scholar
  83. 83.
    Bilensoy E, Hincal AA (2010) In: Gad SC (ed) Cyclodextrin based nanomaterials in pharmaceutical field, pharmaceutical manufacturing handbook: production and processes. Wiley, New York, p 1223Google Scholar
  84. 84.
    Adeoye O, Cabral-Marques H (2017) Cyclodextrin nanosystems in oral drug delivery: a mini review. Int J Pharma 531:521CrossRefGoogle Scholar
  85. 85.
    Torne S, Darandale S, Vavia P, Trotta F, Cavalli R (2013) Cyclodextrin-based nanosponges: effective nanocarrier for Tamoxifen delivery. Pharm Dev Technol 18:619CrossRefPubMedGoogle Scholar
  86. 86.
    Zerkoune L, Angelova A, Lesieur S (2014) Nano-assemblies of modified cyclodextrins and their complexes with guest molecules: incorporation in nanostructured membranes and amphiphile nanoarchitectonics design. Nanomaterials 4:741CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Zhang J, Ma PX (2010) Host–guest interactions mediated nano-assemblies using cyclodextrin-containing hydrophilic polymers and their biomedical applications. Nano Today 5:337CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Antoniuk I, Amiel C (2016) Cyclodextrin-mediated hierarchical self-assembly and its potential in drug delivery applications. J Pharm Sci 105:2570CrossRefPubMedGoogle Scholar
  89. 89.
    Aroon MA, Matsuura A, Ismail AF (2012) Comparison between β-cyclodextrin and chitosan as soft organic materials for surface modification of MWCNTs. Int J Nanosci Nanotechnol 8:71Google Scholar
  90. 90.
    Akolade JO, Oloyede HOB, Salawu MO, Amuzat AO, Ganiyu AI, Onyenekwe PC (2018) Influence of formulation parameters on encapsulation and release characteristics of curcumin loaded in chitosan-based drug delivery carriers. J Drug Deliv Sci Technol 45:11CrossRefGoogle Scholar
  91. 91.
    Khlibsuwan R, Siepmann F, Siepmann J, Pongjanyakul T (2017) Chitosan-clay nanocomposite microparticles for controlled drug delivery: effects of the MAS content and TPP crosslinking. J Drug Deliv Sci Technol 40:1CrossRefGoogle Scholar
  92. 92.
    Grupta V (2013) Mammalian feces as bio-indicator of heavy metal contamination in Bikaner zoological garden, Rajasthan. India Res J Anim Vet Fish Sci 1:10Google Scholar
  93. 93.
    Aguiar MRP, Novaes AC, Guarino AWS (2002) Removal of heavy metals from wastewaters by aluminosilicate. Quim Nova 25:1145CrossRefGoogle Scholar
  94. 94.
    Gove L, Nicholson FA, Beck AJ (2001) Movement of water and steady-state hydrological conditions. Bioresour Technol 78:171CrossRefPubMedGoogle Scholar
  95. 95.
    Saad AHA, Azzam AM, El- Wakeel ST, Mostafa BB, El-Latif MBA (2018) Removal of toxic metal ions from wastewater using ZnO@ Chitosan core-shell nanocomposite. Environ Nanotechnol Monit Manag 9:67Google Scholar
  96. 96.
    Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclide. Bioresour Technol 160:129CrossRefPubMedGoogle Scholar
  97. 97.
    Fu FL, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407CrossRefGoogle Scholar
  98. 98.
    Bailey SE, Olin TU, Bricka RM, Adrian DD (2005) Removal of heavy metal from industrial wastewater using chitosan. Water Res 39:739Google Scholar
  99. 99.
    Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan-based nanomaterials. Carbohydr Polym 82:227CrossRefGoogle Scholar
  100. 100.
    Gogila S, Gomathi T, Sudhaa PN, Anil S (2017) Removal of the heavy metal ion chromium (VI) using Chitosan and Alginate nanocomposites. Int J Biol Macromol 104:1459CrossRefGoogle Scholar
  101. 101.
    Kumar A, Jiang S (2016) Chitosan-functionalized graphene oxide: a novel adsorbent an efficient adsorption of arsenic from aqueous solutions. J Environ Chem Eng 4:1698CrossRefGoogle Scholar
  102. 102.
    Mallakpour S, Madani M (2016) Functionalized-MnO2/chitosan nanocomposites: a promising adsorbent for the removal of lead ions. Carbohydr Polym 147:53CrossRefPubMedGoogle Scholar
  103. 103.
    Hua C, Zhang R, Bai F, Lu P, Liang X (2017) Removal of chromium (VI) from aqueous solutions using quaternized chitosan microspheres. Chin J Chem Eng 25:153CrossRefGoogle Scholar
  104. 104.
    Padilla-Rodriguez A, Hernandez-Viezcas JA, Peralta-Videa J, Gardea-Torresdey J, Perales-Perez O, Roman-Velazques F (2015) Synthesis of protonated chitosan flakes for the removal of vanadium (III, IV and V) oxyanions from aqueous solutions. Microchem J 118:1CrossRefGoogle Scholar
  105. 105.
    Bertoni FA, Gonzalez JC, García SI, Sala LF, Bellu S (2017) Application of chitosan in removal of molybdate ions from contaminated water and groundwater. Carbohydr Polym 180:52Google Scholar
  106. 106.
    Fan HL, Zhou SF, Jiao WZ, Qi GS, Liu YZ (2017) Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method. Carbohydr Polym 174:1192CrossRefPubMedGoogle Scholar
  107. 107.
    He J, Li Y, Wang C, Zhang K, Lin D, Kong L, Liu J (2017) Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers. Appl Surf Sci 426:29CrossRefGoogle Scholar
  108. 108.
    Wu D, Hu L, Wang Y, Wei Q, Yan L, Yan T, Li Y, Du B (2018) EDTA modified β-cyclodextrin/chitosan for rapid removal of Pb(II) and acid red from aqueous solution. J Colloid Interface Sci 543:1CrossRefGoogle Scholar
  109. 109.
    Chiou MS, Ho PY, Li HY (2004) Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes Pigments 60:69CrossRefGoogle Scholar
  110. 110.
    Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399CrossRefGoogle Scholar
  111. 111.
    Liu BJ, Wang DF, Yu GL, Meng HX (2013) Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives—a review. J Ocean Univ China 12:500CrossRefGoogle Scholar
  112. 112.
    Kyzas GZ, Kostoglou M, Vassiliou AA, Lazaridis NK (2011) Treatment of real effluents from dyeing reactor: experimental and modeling approach by adsorption onto chitosan. Chem Eng J 168:577CrossRefGoogle Scholar
  113. 113.
    Bekci Z, Ozveri C, Seki Y, Yurdakoc K (2008) Sorption of malachite green on chitosan bead. J Hazard Mater 154:254CrossRefPubMedGoogle Scholar
  114. 114.
    Xing Y, Sun XM, Li BH (2009) Pyromellitic dianhydride-modified chitosan microspheres for enhancement of cationic dyes adsorption. Environ Eng Sci 26:551CrossRefGoogle Scholar
  115. 115.
    Chiou MS, Li H (2003) Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50:1095CrossRefPubMedGoogle Scholar
  116. 116.
    Chatterjee S, Chatterjee T, Lim SR, Woo SH (2011) Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation. Environ Technol 32:1503CrossRefPubMedGoogle Scholar
  117. 117.
    Crini G, Gimbert F, Robert C, Martel B, Adam O, Morin-Crini N, De Giorgi F, Badot PM (2008) The removal of Basic Blue 3 from aqueous solutions by chitosan-based adsorbent: batch studies. J Hazard Mater 153:96CrossRefPubMedGoogle Scholar
  118. 118.
    Crini G, Martel B, Torri G (2008) Adsorption of CI Basic Blue 9 on chitosan-based materials. Int J Environ Pollut 34:451–465CrossRefGoogle Scholar
  119. 119.
    Dong CL, Chen W, Liu C, Liu Y, Liu HC (2014) Synthesis of magnetic chitosan nanoparticle and its adsorption property for humic acid from aqueous solution. Colloids Surf A Physicochem Eng Asp 446:179CrossRefGoogle Scholar
  120. 120.
    Wang SG, Sun XF, Liu XW, Gong WX, Gao BY, Bao N (2008) Chitosan hydrogel beads for fulvic acid adsorption: behaviors and mechanisms. Chem Eng J 142:239–247CrossRefGoogle Scholar
  121. 121.
    Alsbaiee A, Smith BJ, Xiao L, Ling Y, Helbling DE, Dichtel WR (2016) Rapid removal of organic micropollutants from water by a porous beta-cyclodextrin polymer. Nature 529:190CrossRefPubMedGoogle Scholar
  122. 122.
    Zhao P, Xin M, Li M, Deng J (2015) Adsorption of methyl orange from aqueous solution using chitosan microspheres modified by β-cyclodextrin. Desalination Water Treat 57:11850CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Priscila Fernanda Pereira Barbosa
    • 1
  • Loanda Raquel Cumba
    • 1
  • Rômulo Davi Albuquerque Andrade
    • 2
  • Devaney Ribeiro do Carmo
    • 1
    Email author
  1. 1.Department of Physics and Chemistry, School of Natural Sciences and EngineeringSão Paulo State University (Unesp)Ilha SolteiraBrazil
  2. 2.Federal Institute of Education, Science and Technology of GoiásLuziâniaBrazil

Personalised recommendations