Biodegradation of Yerba Mate Waste Based Fertilizer Capsules. Effect of Temperature

  • L. Llive
  • E. Bruno
  • A. D. Molina-García
  • A. Schneider-Teixeira
  • L. DeladinoEmail author
Original paper


Yerba mate waste based urea fertilizer capsules were obtained and characterized. Yerba mate powder (YMP) content in these encapsulation systems ranged from 52 to 82% for the different formulations. The aim of the study was to evaluate the effect of yerba mate powder:calcium alginate ratio and the assay temperature on capsule degradation and urea release rate in soil. Degradation evolution was monitored by microbiological tests, environmental scanning electronic microscopy, differential scanning calorimetry and Fourier transform infrared spectrometry. Encapsulation efficiency increased with YMP content. The green fertilizing systems generated did not inhibit microorganism development in soil. Degradation was slower for capsules with higher YMP content. Capsules with high YMP content released lower amounts of urea. Both degradation and release rates increased with assay temperature. The recycling of yerba mate powder as a green composite material originated a new fertilizer system.


Waste Yerba mate powder Urea Eco-friendly 



This work has been carried out thanks to project “PRASY 060-14” of the “Instituto Nacional de la Yerba Mate (INYM)”. The contribution of project AGL2016-77056-R (AEI/FEDER, UE) from the Spanish MINECO, is also acknowledged. L. Llive was supported by the “Instituto de Fomento al Talento Humano”, within the fellowship program funded from the Ecuador. The authors gratefully acknowledge the valuable assistance provided by R. Dominguez in the technical DSC work and G. Guerrero in atomic absorption analysis.


  1. 1.
    Barros VR, Boninsegna JA, Camilloni IA, Chidiak M, Magrín GO, Rusticucci M (2015) Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdiscip Rev Clim Change 6:151–169CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Jones JW, Antle JM, Basso B, Boote KJ, Conant RT, Foster I, Keating BA (2017) Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agric Syst 155:269CrossRefGoogle Scholar
  4. 4.
    Clark MS, Horwath WR, Shennan C, Scow KM (1998) Changes in soil chemical properties resulting from organic and low-input farming practices. Agron J 90:662CrossRefGoogle Scholar
  5. 5.
    Lee J (2010) Effect of application methods of organic fertilizer on growth, soil chemical properties and microbial densities in organic bulb onion production. Sci Hortic 124:299CrossRefGoogle Scholar
  6. 6.
    Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective: increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication. AIBS Bull 51:227Google Scholar
  7. 7.
    Ahmad A, Abraham G, Gandotra N, Abrol YP, Abdin MZ (1998) Interactive effect of nitrogen and sulphur on growth and yield of rape-seed-mustard (Brassica juncea L. Czern and Coss and Brassica campestris L.). Genotypes J Agron Crop Sci 181:193CrossRefGoogle Scholar
  8. 8.
    Ahmad A, Abdin MZ (2000) Interactive effect of sulphur and nitrogen on the oil and protein contents and on the fatty acid profiles of oil in the seeds of rapeseed (Brassica campestris L.) and mustard (Brassica juncea L. Czern and Coss). J Agron Crop Sci 185:49CrossRefGoogle Scholar
  9. 9.
    McDonald GK (1992) Effects of nitrogenous fertilizer on the growth, grain yield and grain protein concentration of wheat. Aust J Agric Res 43:949CrossRefGoogle Scholar
  10. 10.
    USEPA (2009) Principles for Greener Cleanups United States Environmental Protection Agency, Office of Solid Waste and Emergency ResponseGoogle Scholar
  11. 11.
    Favoino E, Hogg D (2008) The potential role of compost in reducing greenhouse gases. Waste Manag Res 26:61CrossRefGoogle Scholar
  12. 12.
    Rudzinski WE, Dave AM, Vaishnav UH, Kumbar SG, Kulkarni AR, Aminabhavi TM (2002) Hydrogels as controlled release devices in agriculture. Des Monomers Polym 5:39CrossRefGoogle Scholar
  13. 13.
    Shaviv A (2001) Advances in controlled-release fertilizers. Adv Agron 71:1CrossRefGoogle Scholar
  14. 14.
    Xie L, Liu M, Ni B, Wang Y (2012) New environment: friendly use of wheat straw in slow: release fertilizer formulations with the function of superabsorbent. Ind Eng Chem Res 51:3855CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Liang X, Yang X, Liu H, Yao J (2014) An eco-friendly slow-release urea fertilizer based on waste mulberry branches for potential agriculture and horticulture applications. ACS Sust Chem 2:1871CrossRefGoogle Scholar
  16. 16.
    Zhang S, Yang Y, Gao B, Wan Y, Li YC, Zhao C (2016) Bio-based interpenetrating network polymer composites from locust sawdust as coating material for environmentally friendly controlled-release urea fertilizers. J Agric Food Chem 64:5692CrossRefGoogle Scholar
  17. 17.
    Peng C, Zheng J, Huang S, Li S, Li D, Cheng M, Liu Y (2017) Application of sodium alginate in induced biological soil crusts: enhancing the sand stabilization in the early stage. J Appl Phycol 29:1421CrossRefGoogle Scholar
  18. 18.
    Galán-Marín C, Rivera-Gómez C, Petric J (2010) Clay-based composite stabilized with natural polymer and fibre. Constr Build Mater 24:1462CrossRefGoogle Scholar
  19. 19.
    Schneider-Teixeira A, Deladino L, Zaritzky N (2016) Yerba mate (Ilex paraguariensis) waste and alginate as a matrix for the encapsulation of N fertilizer. ACS Sustain Chem 4:2449CrossRefGoogle Scholar
  20. 20.
    Llive L (2018) Empleo de subproductos de la industria yerbatera en el desarrollo de sistemas de encapsulación para la liberación controlada de fertilizantes (Master dissertation, Universidad Nacional de La Plata)Google Scholar
  21. 21.
    Searcy RL, Reardon JE, Foreman JA (1967) A new photometric method for serum urea nitrogen determination. Am J Med Technol 33:15Google Scholar
  22. 22.
    Tomaszewska M, Jarosiewicz A (2002) Use of polysulfone in controlled-release NPK fertilizer formulations. J Agric Food Chem 50:4634CrossRefGoogle Scholar
  23. 23.
    Wang Y, Liu M, Ni B, Xie L (2011) κ-carrageenan–sodium alginate beads and superabsorbent coated nitrogen fertilizer with slow-release, water-retention, and anticompaction properties. Ind Eng Chem Res 51:1413CrossRefGoogle Scholar
  24. 24.
    Deladino L, Navarro AS, Martino MN (2013) Carrier systems for yerba mate extract (Ilex paraguariensis) to enrich instant soups Release mechanisms under different pH conditions. LWT 53:163CrossRefGoogle Scholar
  25. 25.
    Salman OA (1989) Polyethylene-coated urea. 1. Improved storage and handling properties. Ind Eng Chem Res 28:630CrossRefGoogle Scholar
  26. 26.
    Manual F (1998) IFDC. Kluwer Academic, NorwellGoogle Scholar
  27. 27.
    Fulton J, Port K (2016) Physical properties of granular fertilizers and impact on spreading Ohio University. https://digitalag.osuedu/precision-ag/research-focuses/precision-crop-management
  28. 28.
    Peleg M (1977) Flowability of food powders and methods for its evaluation: a review. J Food Process Eng 1:328CrossRefGoogle Scholar
  29. 29.
    Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP (2007) Compostability of bioplastic packaging materials: an overview. Macromol Biosci 7:255CrossRefGoogle Scholar
  30. 30.
    Wu Z, Guo L, Qin S, Li C (2012) Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. J Ind Microbiol Biot 39:317CrossRefGoogle Scholar
  31. 31.
    Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Till Res 53:215CrossRefGoogle Scholar
  32. 32.
    Jarrell WM, Boersma L (1979) Model for the release of urea by granules of sulfur-coated urea applied to soil. Soil Sci Soc AM J 43:1044CrossRefGoogle Scholar
  33. 33.
    Sarkar A, Biswas DR, Datta SC, Manjaiah KM, Roy T (2017) Release of phosphorus from laboratory made coated phosphatic fertilizers in soil under different temperature and moisture regimes. Proc Natl Acad Sci India B 87:1299Google Scholar
  34. 34.
    Peppas NA, Sahlin JJ (1989) A simple equation for the description of solute release III Coupling of diffusion and relaxation. Int J Pharm 57:169CrossRefGoogle Scholar
  35. 35.
    Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 75:23CrossRefGoogle Scholar
  36. 36.
    Kopcha M, Lordi NG, Tojo KJ (1991) Evaluation of release from selected thermosoftening vehicles. J Pharm Pharmacol 43:382CrossRefGoogle Scholar
  37. 37.
    Wu L, Liu M (2008) Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Car Polym 72:240CrossRefGoogle Scholar
  38. 38.
    Lupo B, Maestro A, Gutiérrez JM, González C (2015) Characterization of alginate beads with encapsulated cocoa extract to prepare functional food: comparison of two gelation mechanisms. Food Hydrocoll 49:25CrossRefGoogle Scholar
  39. 39.
    Rashidzadeh A, Olad A, Salari D, Reyhanitabar A (2014) On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-poly (acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertilizer. J Polym Res 21:344CrossRefGoogle Scholar
  40. 40.
    Rashidzadeh A, Olad A (2014) Slow-released NPK fertilizer encapsulated by NaAlg-g-poly (AA-co-AAm)/MMT superabsorbent nanocomposite. Carb Polym 114:269CrossRefGoogle Scholar
  41. 41.
    Jamnongkan T, Kaewpirom S (2010) Potassium release kinetics and water retention of controlled-release fertilizers based on chitosan hydrogels. J Polym Environ 18:413CrossRefGoogle Scholar
  42. 42.
    Khaleel R, Reddy KR, Overcash MR (1981) Changes in soil physical properties due to organic waste applications: a review 1. J Environ Qual 10:133CrossRefGoogle Scholar
  43. 43.
    Pandey VC, Singh N (2010) Impact of fly ash incorporation in soil systems. Agric Ecosyst Environ 136:16CrossRefGoogle Scholar
  44. 44.
    Anbinder PS, Deladino L, Navarro AS, Amalvy JI, Martino MN (2011) Yerba mate extract encapsulation with alginate and chitosan systems: interactions between active compound encapsulation polymers. JEAS 1:80CrossRefGoogle Scholar
  45. 45.
    Teixeira AS, Navarro AS, Molina-García AD, Martino M, Deladino L (2015) Corn starch systems as carriers for yerba mate (Ilex paraguariensis) antioxidants: effect of mineral addition. Food Bioprod Process 94:39CrossRefGoogle Scholar
  46. 46.
    Santagapita PR, Mazzobre MF, Buera MP (2012) Invertase stability in alginate beads: effect of trehalose and chitosan inclusion and of drying methods. Food Res Int 47:321CrossRefGoogle Scholar
  47. 47.
    Smitha B, Sridhar S, Khan A (2005) Solid polymer electrolyte membranes for fuel cell applications: a review. J Membrane Sci 259:10CrossRefGoogle Scholar
  48. 48.
    Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB (2005) Papain entrapment in alginate beads for stability improvement and site-specific delivery: physicochemical characterization and factorial optimization using neural network modeling. Aaps Pharmscitech 6:E209CrossRefGoogle Scholar
  49. 49.
    González-Rodríguez MA, Holgado C, Sánchez-Lafuente AM, Rabasco A (2002) FiniAlginate/chitosan particulate systems for sodium diclofenac release. Int J Pharm 232:225CrossRefGoogle Scholar
  50. 50.
    Hussain MR, Devi R, Maji T (2012) Controlled release of urea from chitosan microspheres prepared by emulsification and cross-linking method Iran. Polym J 21:473Google Scholar
  51. 51.
    Ni B, Liu M, Lü S (2009) Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations. Chem Eng J 155:892CrossRefGoogle Scholar
  52. 52.
    Bajpai S, Sharma S (2004) Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React Funct Polym J 59:129CrossRefGoogle Scholar
  53. 53.
    Sartori C, Finch DS, Ralph B, Gilding K (1997) Determination of the cation content of alginate thin films by FT-IR spectroscopy. Polym J 38:43CrossRefGoogle Scholar
  54. 54.
    Sarmento B, Ferreira D, Veiga F, Ribeiro AN (2006) Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr Polym 66:1CrossRefGoogle Scholar
  55. 55.
    Trenkel M E (2010) Slow and controlled-release and stabilized fertilizers: an option for enhancing nutrient use efficiency in agriculture IFA, International fertilizer industry association Paris FranceGoogle Scholar
  56. 56.
    Chen J, Lü S, Zhang Z, Zhao X, Li X, Ning P, Liu M (2018) Environmentally friendly fertilizers: a review of materials used and their effects on the environment. Sci Total Environ 613:829CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • L. Llive
    • 1
  • E. Bruno
    • 1
    • 2
  • A. D. Molina-García
    • 3
  • A. Schneider-Teixeira
    • 1
  • L. Deladino
    • 1
    Email author
  1. 1.Centro de Investigación y Desarrollo en Criotecnología de los Alimentos (CIDCA-CONICET)UNLPLa PlataArgentina
  2. 2.Comisión de Investigaciones Científicas de la provincia de Buenos AiresLa PlataArgentina
  3. 3.Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC)MadridSpain

Personalised recommendations