Polyhydroxyalkanoates/Fibrillated Nanocellulose Composites for Additive Manufacturing

  • F. ValentiniEmail author
  • A. Dorigato
  • D. Rigotti
  • A. PegorettiEmail author
Original paper


Novel poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)(PHBH)/fibrillated nanocellulose biodegradable composites for additive manufacturing were produced and characterized. Fibrillated nanocellulose (NCF) was isolated with high energy ultrasonication and dispersed via solution mixing in the polymer matrix. Composite filaments having a nanofiller concentration of 0.5 wt%, 1 wt% and 3 wt% were then extruded, characterized and used in fused deposition modeling (FDM). Neat PHBH powder was then manually added to prepare a solid mixture at different fibrillated nanocellulose concentrations (from 0.5 to 3 wt%), to be then used to feed an extruder. SEM observations on filaments and 3D printed samples evidenced the good dispersion of fibrillated nanocellulose inside the matrix with the presence of agglomerates at higher NCF contents. The beneficial effects of the fibrillated nanocellulose in terms of stress at break and of elongation at break showed a maximum at a fibrillated nanocellulose content of 0.5 wt%. Moreover, the presence of fibrillated nanocellulose did not affect the thermal degradation behaviour of the materials, and also the glass transition and the melting temperatures were not influenced by NCF addition.


Polyhydroxyalkanoates Nanocellulose 3D printing Fused deposition modeling Additive manufacturing 



  1. 1.
    Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2(2):307–344CrossRefGoogle Scholar
  2. 2.
    Avella M, Buzarovska A, Errico M, Gentile G, Grozdanov A (2009) Eco-challenges of bio-based polymer composites. Materials 2(3):911–925CrossRefGoogle Scholar
  3. 3.
    Niaounakis M (2013) Biopolymers: reuse, recycling, and disposal. William Andrew, NorwichGoogle Scholar
  4. 4.
    Bastioli C (2014) Handbook of biodegradable polymers. Smithers Rapra Technology Ltd, ShrewsburyGoogle Scholar
  5. 5.
    Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247CrossRefGoogle Scholar
  6. 6.
    Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. De Gruyter, BerlinCrossRefGoogle Scholar
  7. 7.
    Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32(8):1516–1526CrossRefGoogle Scholar
  8. 8.
    Eichhorn S, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Weder R, Thielemans CW, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A, Mangalam A, Simonsen J, Benight A, Bismarck A, Berglund L, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRefGoogle Scholar
  9. 9.
    Lagerwall JPF, Schütz C, Salajkova M, Noh J, Park JH, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6(1):e80CrossRefGoogle Scholar
  10. 10.
    Iwamoto S, Nakagaito A, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A 81(6):1109–1112CrossRefGoogle Scholar
  11. 11.
    Li W, Zhao X, Huang Z, Liu S (2013) Nanocellulose fibrils isolated from bhkp using ultrasonication and their reinforcing properties in transparent poly (vinyl alcohol) films. J Polym Res 20(8):210CrossRefGoogle Scholar
  12. 12.
    Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155CrossRefGoogle Scholar
  13. 13.
    Tang C, Haiqing L (2008) Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible light transmittance. Composites A 39(10):1638–1643CrossRefGoogle Scholar
  14. 14.
    Cheng Q, Wang S, Han Q (2010) Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. Fibril characterization. J Appl Polym Sci 115:2756–2762CrossRefGoogle Scholar
  15. 15.
    Cataldi A, Rigotti D, Nguyen VDH, Pegoretti A (2018) Polyvinyl alcohol reinforced with crystalline nanocellulose for 3d printing application. Mater Today Commun 15:236–244CrossRefGoogle Scholar
  16. 16.
    Cataldi A, Esposito Corcione C, Frigione M, Pegoretti A (2016) Photocurable resin/microcrystalline cellulose composites for wood protection: physical-mechanical characterization. Prog Org Coat 99:230–239CrossRefGoogle Scholar
  17. 17.
    Jasgurpreet SC, Rupinder S (2017) Pre and post processing techniques to improve surface characteristics of fdm parts: a state of art review and future applications. Rapid Prototyp J 23(3):495–513CrossRefGoogle Scholar
  18. 18.
    Minetola P, Iuliano L, Marchiandi G (2016) Benchmarking of fdm machines through part quality using it grades. Procedia CIRP 41:1027–1032CrossRefGoogle Scholar
  19. 19.
    Sun Q, Rizvi G, Rizvi G, Gu P (2013) Effect of processing conditions on the bonding quality of fdm polymer filaments. Rapid Prototyp J 14(2):72–80CrossRefGoogle Scholar
  20. 20.
    Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811CrossRefGoogle Scholar
  21. 21.
    Shankar S, Rhim JW (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym 135:18–26CrossRefGoogle Scholar
  22. 22.
    Cheng Q, Wang S, Rials TG (2009) Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Composites A 40(2):218–224CrossRefGoogle Scholar
  23. 23.
    Frone AN, Panaitescu D, Donescu D, Spataru C, Radovici C, Trusca R, Somoghi R (2011) Preparation and characterisization of pva composites with cellulose nanofibers obtained by ultrasonication. BioResources 6(1):487–512Google Scholar
  24. 24.
    Salim YS, Chan CH, Sudesh K, Gan SN (2014) Isothermal crystallization kinetics of microbial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Int J Pharm Pharm Sci 6(3):3–8Google Scholar
  25. 25.
    Clarke A, Vasileiou AA, Kontopoulou M, Maazouz A (2017) Crystalline nanocellulose in biodegradable polyester nanocomposites prepared by in situ polymerization. In: AIP conference proceedings, vol 1914. AIP Publishing LLCGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Industrial Engineering and INSTM Research UnitUniversity of TrentoTrentoItaly

Personalised recommendations