Advertisement

Effect of Natural Glyceryl Tributyrate as Plasticizer and Compatibilizer on the Performance of Bio-Based Polylactic Acid/poly(3-hydroxybutyrate) Blends

  • M. L. Iglesias Montes
  • D. A. D’amico
  • L. B. Manfredi
  • V. P. CyrasEmail author
Original paper
  • 17 Downloads

Abstract

Bio-based poly(lactic acid)/poly(3-hydroxybutyrate) (PLA/PHB) films were melt-blended with a natural hydrophobic plasticizer (glyceryl tributyrate, TB) at three different concentrations (10, 15 and 20% by weight per 100 parts of the blends) to study the effect of TB on the final properties of the materials. The pursued aim was to obtain a material with potential use in the packaging industry. Two different PLA/PHB ratios were used, 70/30 and 60/40, respectively. A full characterization of the developed blends was carried out, including the morphological, thermal, mechanical and barrier properties. The thermal test revealed the immiscibility between PLA and PHB by showing two glass transition temperatures for the blends and biphasic melt. Mechanical tests showed the increased in the elongation at break as the plasticizer content in films increased. The incorporation of PHB crystals in the PLA matrix displayed an improvement in the water barrier properties of materials. Finally, formulations PLA/PHB-TB with 15 wt% of plasticizer presented the best combination of properties suitable for the intended use in films manufacturing, showing toughness and ductility, good water barrier properties and transparency with slightly amber color.

Keywords

Blends Polylactic acid (PLA) Poly(3-hydroxybutyrate) (PHB) 

Notes

Acknowledgements

This research was made possible by the support from the National Research Council of Argentina (PIP 0527) and the National University of Mar del Plata.

References

  1. 1.
    Mülhaupt R (2013) Green polymer chemistry and bio-based plastics: Dreams and reality. Macromol Chem Phys 214:159–174.  https://doi.org/10.1002/macp.201200439 CrossRefGoogle Scholar
  2. 2.
    Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26.  https://doi.org/10.1023/A:1021013921916 CrossRefGoogle Scholar
  3. 3.
    Lim JS, Park K, Il Chung GS, Kim JH (2013) Effect of composition ratio on the thermal and physical properties of semicrystalline PLA/PHB-HHx composites. Mater Sci Eng C 33:2131–2137.  https://doi.org/10.1016/j.msec.2013.01.030 CrossRefGoogle Scholar
  4. 4.
    Li L, Huang W, Wang B et al (2015) Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers. Polym (United Kingdom) 68:183–194.  https://doi.org/10.1016/j.polymer.2015.05.024 Google Scholar
  5. 5.
    Bucci DZ, Tavares LBB, Sell I (2005) PHB packaging for the storage of food products. Polym Test 24:564–571.  https://doi.org/10.1016/j.polymertesting.2005.02.008 CrossRefGoogle Scholar
  6. 6.
    Crétois R, Chenal JM, Sheibat-Othman N et al (2016) Physical explanations about the improvement of PolyHydroxyButyrate ductility: hidden effect of plasticizer on physical ageing. Polym (United Kingdom) 102:176–182.  https://doi.org/10.1016/j.polymer.2016.09.017 Google Scholar
  7. 7.
    Puglia D, Fortunati E, D’Amico DA et al (2016) Influence of processing conditions on morphological, thermal and degradative behavior of nanocomposites based on plasticized poly(3-hydroxybutyrate) and organo-modified clay. J Polym Environ 24:12–22.  https://doi.org/10.1007/s10924-015-0744-5 CrossRefGoogle Scholar
  8. 8.
    Raza ZA, Riaz S, Banat IM (2017) Polyhydroxyalkanoates: Properties and chemical modification approaches for their functionalization. Biotechnol Progr 34(1):29–41.  https://doi.org/10.1002/btpr.2565 CrossRefGoogle Scholar
  9. 9.
    Zhang M, Thomas NL (2011) Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30:67–79.  https://doi.org/10.1002/adv.20235 CrossRefGoogle Scholar
  10. 10.
    Pillin I, Montrelay N, Grohens Y (2006) Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor? Polymer 47:4676–4682.  https://doi.org/10.1016/j.polymer.2006.04.013 CrossRefGoogle Scholar
  11. 11.
    Armentano I, Fortunati E, Burgos N et al (2015) Bio-based PLA_PHB plasticized blend films: processing and structural characterization. LWT—Food Sci Technol 64:980–988.  https://doi.org/10.1016/j.lwt.2015.06.032 Google Scholar
  12. 12.
    Saeidlou S, Huneault M, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677.  https://doi.org/10.1016/j.progpolymsci.2012.07.005 CrossRefGoogle Scholar
  13. 13.
    Kose R, Kondo T (2013) Size effects of cellulose nanofibers for enhancing the crystallization of poly(lactic acid). J Appl Polym Sci 128:1200–1205.  https://doi.org/10.1002/app.38308 CrossRefGoogle Scholar
  14. 14.
    Martino VP, Jiménez A, Ruseckaite R, Avérous L (2011) Structure and properties of clay nano-biocomposites based on poly(lactic acid) plasticized with polyadipates. Polym Adv Technol 22:2206–2213.  https://doi.org/10.1002/pat.1747 CrossRefGoogle Scholar
  15. 15.
    Jost V (2015) Blending of polyhydroxybutyrate-co-valerate with polylactic acid for packaging applications—reflections on miscibility and effects on the mechanical and barrier properties. Chem Biochem Eng Q 29:221–246.  https://doi.org/10.15255/CABEQ.2014.2257 CrossRefGoogle Scholar
  16. 16.
    Arrieta MP, López J, Hernández A, Rayón E (2014) Ternary PLA-PHB-Limonene blends intended for biodegradable food packaging applications. Eur Polym J 50:255–270.  https://doi.org/10.1016/j.eurpolymj.2013.11.009 CrossRefGoogle Scholar
  17. 17.
    Wang S, Ma P, Wang R et al (2008) Mechanical, thermal and degradation properties of poly(d,l-lactide)/poly(hydroxybutyrate-co-hydroxyvalerate)/poly(ethylene glycol) blend. Polym Degrad Stab 93:1364–1369.  https://doi.org/10.1016/j.polymdegradstab.2008.03.026 CrossRefGoogle Scholar
  18. 18.
    D’Amico DA, Iglesias Montes ML, Manfredi LB, Cyras VP (2016) Fully bio-based and biodegradable polylactic acid/poly(3-hydroxybutirate) blends: use of a common plasticizer as performance improvement strategy. Polym Test 49:22–28.  https://doi.org/10.1016/j.polymertesting.2015.11.004 CrossRefGoogle Scholar
  19. 19.
    Vieira MGA, Da Silva MA, Dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263.  https://doi.org/10.1016/j.eurpolymj.2010.12.011 CrossRefGoogle Scholar
  20. 20.
    Abdelwahab M, Flynn A, Chiou B, Sen et al (2012) Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym Degrad Stab 97:1822–1828.  https://doi.org/10.1016/j.polymdegradstab.2012.05.036 CrossRefGoogle Scholar
  21. 21.
    Kong Y, Hay JN (2003) The enthalpy of fusion and degree of crystallinity of polymers as measured by DSC. Eur Polym J 39:1721–1727.  https://doi.org/10.1016/S0014-3057(03)00054-5 CrossRefGoogle Scholar
  22. 22.
    Wang Y, Qin Y, Zhang Y et al (2014) Effects of N-octyl lactate as plasticizer on the thermal and functional properties of extruded PLA-based films. Int J Biol Macromol 67:58–63.  https://doi.org/10.1016/j.ijbiomac.2014.02.048 CrossRefGoogle Scholar
  23. 23.
    Ohkoshi I, Abe H, Doi Y (2000) Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate]. Polymer 41:5985–5992.  https://doi.org/10.1016/S0032-3861(99)00781-8 CrossRefGoogle Scholar
  24. 24.
    Blumm E, Owen AJ (1995) Miscibility, crystallization and melting of poly (3-hydroxybutyrate)/ poly (L-lactide) blends. 36:4077–4081Google Scholar
  25. 25.
    Furukawa T, Sato H, Murakami R et al (2007) Comparison of miscibility and structure of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(l-lactic acid) blends with those of poly(3-hydroxybutyrate)/poly(l-lactic acid) blends studied by wide angle X-ray diffraction, differential scanning calorimetry. Polymer 48:1749–1755.  https://doi.org/10.1016/j.polymer.2007.01.020 CrossRefGoogle Scholar
  26. 26.
    Chang L, Woo EM (2011) Effects of molten poly(3-hydroxybutyrate) on crystalline morphology in stereocomplex of poly(L-lactic acid) with poly(D-lactic acid). Polymer 52:68–76.  https://doi.org/10.1016/j.polymer.2010.11.028 CrossRefGoogle Scholar
  27. 27.
    Nanda MR, Misra M, Mohanty AK (2011) The effects of process engineering on the performance of PLA and PHBV blends. Macromol Mater Eng 296:719–728.  https://doi.org/10.1002/mame.201000417 CrossRefGoogle Scholar
  28. 28.
    Bartczak Z, Galeski A, Kowalczuk M et al (2013) Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate)—morphology and properties. Eur Polym J 49:3630–3641.  https://doi.org/10.1016/j.eurpolymj.2013.07.033 CrossRefGoogle Scholar
  29. 29.
    Ferreira BMP, Zavaglia CAC, Duek EAR (2002) Films of PLLA/PHBV: Thermal, morphological, and mechanical characterization. J Appl Polym Sci 86:2898–2906.  https://doi.org/10.1002/app.11334 CrossRefGoogle Scholar
  30. 30.
    D’Amico DA, Manfredi LB, Cyras VP (2012) Relationship between thermal properties, morphology, and crystallinity of nanocomposites based on polyhydroxybutyrate. J Appl Polym Sci 123:200–208.  https://doi.org/10.1002/app.34457 CrossRefGoogle Scholar
  31. 31.
    D’Amico DA, Cyras VP, Manfredi LB (2014) Non-isothermal crystallization kinetics from the melt of nanocomposites based on poly(3-hydroxybutyrate) and modified clays. Thermochim Acta 594:80–88.  https://doi.org/10.1016/j.tca.2014.08.023 CrossRefGoogle Scholar
  32. 32.
    Bonilla J, Fortunati E, Atarés L et al (2014) Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocoll 35:463–470.  https://doi.org/10.1016/j.foodhyd.2013.07.002 CrossRefGoogle Scholar
  33. 33.
    Dilara P, Briassoulis D (1998) Standard testing methods for mechanical properties and degradation of low density polyethylene (LDPE) films used as greenhouse covering materials: a critical evaluation. Polym Test 17:549–585.  https://doi.org/10.1016/S0142-9418(97)00074-3 doiCrossRefGoogle Scholar
  34. 34.
    Adhikary KB, Pang S, Staiger MP (2008) Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos Part B Eng 39:807–815.  https://doi.org/10.1016/j.compositesb.2007.10.005 CrossRefGoogle Scholar
  35. 35.
    Zembouai I, Kaci M, Bruzaud S et al (2013) A study of morphological, thermal, rheological and barrier properties of Poly(3-hydroxybutyrate-Co-3-Hydroxyvalerate)/polylactide blends prepared by melt mixing. Polym Test 32:842–851.  https://doi.org/10.1016/j.polymertesting.2013.04.004 CrossRefGoogle Scholar
  36. 36.
    Arrieta MP, López J, Ferrándiz S, Peltzer MA (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Test 32:760–768.  https://doi.org/10.1016/j.polymertesting.2013.03.016 CrossRefGoogle Scholar
  37. 37.
    Mali S, Grossmann MVE, García M et al (2004) Barrier, mechanical and optical properties of plasticized yam starch films. Carbohydr Polym 56:129–135.  https://doi.org/10.1016/j.carbpol.2004.01.004 CrossRefGoogle Scholar
  38. 38.
    Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2003) High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene. Polymer 44:1517–1526.  https://doi.org/10.1016/S0032-3861(02)00907-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. L. Iglesias Montes
    • 1
  • D. A. D’amico
    • 1
  • L. B. Manfredi
    • 1
  • V. P. Cyras
    • 1
    Email author
  1. 1.Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de IngenieríaUniversidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Mar del PlataArgentina

Personalised recommendations